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ABSTRACT

The object of this research is the development of systematic meth-
ods for the analysis of networks which contain pilecewise-linear (PWL)
elements, Many physical devices have nonlinear characteristics that can
be closely approximated by PWL characteristics. In order to facilitate
the systematic analysis of networks that contain such devices, "PWL
operators" have been introduced to represent the characteristic curves
of PWL elements.

Rules for addition, subtraction, multiplication, inversion, and
other operations with PWL operators have been formulated, and the alge-
braic properties of these operations have been studied. Addition of PWL
operators is associative and commutative, and multiplication is associa-
tive but not commutative. Methods for solving PWL-operator equations
have also been investigated.

The input and transfer characteristics of resistive PWL ladder net-
works can easily be calculated in terms of PWL operators. A general
procedure has been formulated for analysis of any network that contains
an arbitrary configuration of linear resistors and two PWL resistors.
Analysis of resistive PWL networks with three PWL resistors leads to an
equation of the form

A(X + I) = BX + C

where A, B, and C are known PWL operators, I is the identity operator,
and X is an unknown PWL operator., Because the distributive law for PWL
operators does not hold from the left, this equation cannoi be solved
in terms of the basic algebraic operations; therefore, a new operation
called "trivolution" has been defined to solve this equation,

PWL operators are useful in the analysis of electronic circuits.
For large-signal operation, the characteristics of diodes, vacuum tubes,
transistors, and other electronic devices can be approximated by PWL
characteristics and described in lerms of PWL operators. PWL input and
transfer characteristics of electronic circuits can be determined by

this method.
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To describe the behavior of PWL networks which contain energy stor-
age elements, PWL differential equations can be formulated in terms of
PWL operators. For PWL R-C, R-L, and L-C network problems, solutions to
these differential equations can be expressed in terms of PWL operators.
For example, the voltage across a parallel combination of a PWL resistor
and a PWL capacitor can be expressed as a PWL operator operating on an
exponential with a PWL exponent. Further development of methods for
solving PWL differential equations 1s needed.

The use of PWL operators provides a convenient way of solving PWL
network problems on a digital computer. Programs have been written for
the Burroughs 220 Computer for carrying out algebralc operations with
PWL operators and for solving PWL-operator equations. Iterative methods
have been developed for computer solution of higher-order PWL equations
and sets of simultaneous PWL equations that cannot be solved directly in
terms of the basic algebraic operations.

Since any nonlinear element can generally be approximated by a PWL
characteristic within any desired degree of accuracy, it is hoped that
the PWL operator method which has been developed will have fairly wide

application to the approximate analysis of nonlinear networks.
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I. INTRODUCTION

The object of this research has been to develop systematic methods
for the analysis of networks that contain piecewise-linear elements. A
general method has been developed for analysis of resistive PWL* networks,
and special cases of PWL networks containing reactive elements have been
solved. One reason for studying PWL-network theory is that many electron-
ic devices such as diodes, transistors, and vacuum tubes have character-
istics which can be closely approximated by PWL curves. Furthermore,
almost any nonlinear characteristic can be approximated to any desired
degree of accuracy by a suitably chosen PWL characteristic., Although PWL
networks are more difficult to analyze than linear networks, they are
easier to analyze than more general nonlinear networks. For this reason,
PWL-network theory is useful for the approximate analysis of nonlinear
networks. The study of PWL networks is a compromise between studying
linear networks, which have already been extensively studied, anrd non-
linear networks, which are very difficult to analyze.

In general, it is possible to analyze a PWL network on a section-by-
section basis, This method reduces the solution to a series of linear
problems, each of which can be solved by standard linear-circuit tech-
niques. After solution of each linear problem, one must determine which
PWL element will next change to a new section of its PWL characteristic
and then formulate the appropriate boundary conditions for the next linear
problem. When the number of PWL elements is large, or when each PWL char-
acteristic curve has a large number of sections, solution on the section-
by-section baslis becomes very tedious. The need for a more systematic
method for analysis of PWL networks is thus apparent, A systematic meth-
od of analysis and a concise notation are also reeded in order to utilize

high-speed digital computers efficiently for the solution of PWL networks.

* PWL will be used as an abbreviation for piecewise-linear,



A. PWL-NETWORK MODELS

The use of idealized models is necessary in the analysis of physical
systems, Such models abstract the essential properties of the physical
system, but at the same time they are simple enough to be useful for pur-
poses of analysis. For a glven physical device, different models can be
constructed to serve different purposes, The type of model that is used
often depends on the amplitude and frequency of the input to the system.
For small-signal analysis, a linear model may be used; but for different
regions of operation, different linear models may be required. For oper-
ation over a large range of inputs, a linear model is often inadequate
and a nonlinear or a PWL model is needed.

The nonlinear i-v characteristic of & typical tunnel diode [Ref. 1]
is shown in Fig. 1. For amall-signal operation about the point Vo the
linear model of Fig. 2 may be used, with -8, equal to the slope of the
i-v curve at the operating point. For large-signal operation, the i-v
characteristic may be approximated by a five-section PWL curve as shown.
Either fewer or more sections may be used in the PWL approximation, de-
pending on the accuracy which is needed.

Circuit models for PWL devices can be constructed using ideal diodes,
linear resistors, and sources. The ideal diode, whose v-i characteristic
is shown in Fig. 3, has two states., When i > 0, v = 0 and the diode is
"on"; when v < 0, 1 = 0 and the diode is "off". Fig. 4 shows one pousi-
ble circuit model for the PWL tunnel diode characteristic of Fig. 1. In

s Dy for v<v

this model, diode D, conducts for v<v 5 >

y D, for v > v3,

1 3

and Dh for v > vu.

B. METHODS FOR ANALYSIS OF PWL NETWORKS

There are two basic approaches to the analysis of networks that con-
tain resistive PWL elements. In the first approach, a circuit model com-
posed of ideal diodes, resistors, and sources is constructed for each PWL
element, and the resulting resistive-diode network is analyzed by con-
sidering the states of the individual diodes, 1In the second approach,
the characteristic curves of the PWL elements are represented symboli-
cally, and the analysis 1s carried out directly in terms of this symbolism.

-2 -
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When the latter approach is used, the necessity for drawing diode models
is eliminated; therefore, it is unnecessary to consider the individual
diode states during the process of analysis.

There are two conventional methods for analyzing resistive diode net-
works--the method of assumed states and the breakpoint method. These
methods are discussed in detail with many examples in Electronic Circult

Theory [Ref. 2]. In the method of assumed states, the circuit is analyzed
using all possible combinations of diode states. For each assumed set of
diode states, each conducting diode is replaced with a short circuit, each
nonconducting diode is replaced with an open circuit, and the circuit re-
duces to a network of linear resistors and sources. The v-1 characteris-
tic of each reduced network is a straight line, and the PWL characteristic
of the original network must consist of portions of these lines. The ap-
propriate portions of the lines can usually be determined by considering
what happens in the network as the terminal voltage or current is varied,
If the network contains n diodes, there are 2" possible combinations of
diode states; comsequently, the amount of work required for this method
increases rapidly with the size of the network, Furthermore, much of

this work may be wasted because many of the possible combinations of diode
states may never actually occur for any input voltage.

The breakpoint method is usually more efficient than the method of
assumed states. The points at which successive line segments of a PWL
curve meet are called breakpoints. A PWL curve is completely determined
by specifying the coordinates of its breakpoints and the slope of both
end segments., Each breakpoint on the characteristic curve of a diode net-
work corresponds to a change of state of one of the diodes. At the break-
point of a diode, the current and voltage are both zero for that diode.
This constraint determines the input voltage and current to the network
at the breakpoint if the states of the other diodes are known. The break-
points can be determined successively by considering what happens in the
network as the terminal voltage or current is increased.

An algebraic method for analysis of simple diode networks was pre-
sented by Schaefer [Ref. 3] in 1954, Stern [Refs. 4,5] developed an im-
proved and more-general version of this algebraic method in 1956. In

Stern's method, the characteristics of PWL elements are expressed
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symbolically in terms of @' and @~ transformations (see Section II. E).
To analyze a network, loop or node equations can be written in terms of
these transformations., By applying the rules of Ltern's algebra, these
equations can be solved for the desired PWL characteristic. Stern's
method is discussed further in Appendix A and in Section X. B. Dennis
[Ref. 6] glves a procedure for tracing the PWL curve of a resistive diode
network., This procédure is related to the methods of quadratic program-

ming used in operations research.

C. THE PWL-OPERATOR METHOD

The existing methods for analysis of PWL networks have been briefly
discussed. As an attempt to find a more systematic method that is suita-
ble for use with a digital computer, the PWL-operator method has been
developed. In Chapter II, PWL operators are defined to represent the
characteristic curves of PWL elements. The basic algebraic operations
are defined for PWL operators and the algebraic properties of these op-
erations are studied in Chapter III. Chapter IV introduces a new opera-
tion, which solves a class of PWL-operator equations that cannot be
solved in terms of the basic algebraic operations. In Chapter V, PWL-
operator methods are applied to determine input and transfer character-
istics of resistive PWL networks, and in Chapter VI, the analysis of PWL
two-ports is considered. PWL-operator methods are used to analyze vacuum-
tube and transistor circuits in Chapter VII. Extension of PWL-operator
methods to PWL networks that contain reactive elements is considered in
Chapter VIII., Chapter IX discusses computer programs for the analysis of
PWL networks.

The PWL-operator methods are not intended to be mathematically rigor-
ous in all cases, but rather are intended to be practical methods of solv-
ing problems. Instead of being cpncerned with rigorous definitions and
proofs of theorems, for the most part, we will deal with the development
of the theory and its practical application. Although an attempt has
been made to make the theory as generally applicable as possible, excep-
tional "pathological" examples occur where an invalid solution is occa-
sionally obtained. Since these pathological cases generally correspond
to non-physically-realizable situations, we are not concerned with them

as engineers, and we will let the mathematicians worry about them.
-5 -
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II. MATHEMATICAL REPRESENTATION OF PWL CURVES

The first step in developing a systematic method for analysis of PWL
networks is to determine a concise mathematical representation for PWL
curves. After examination of some of the types of PWL curves that can be
encountered in the analysis of resistive PWL networks, PWL operators are
defined to represent such curves., Stern's notation for representing PWL

functions is also discussed.

A. CHARACTERISTIC CURVES OF RESISTIVE PWL NETIWORKS

A PWL curve consists of a series of adjolning line segments. FPWL
curves can be classified according to their range of definition. They
can be defined for (1) an infinite, (2) a semi-infinite, or (3) a finite
range of values of the independent variable, Furthermore, two or more
separate curves of these types may be combined to form a composite char-
acteristic curve. Network models composed of ideal diodes, positive and
negative* resistances, and independent and dependent sources will be used
to illustrate some of the types of PWL characteristic curves that can
occur,

The first type of PWL curves, which are defined for all values of
the independent variable, occur most frequently. Examples of networks
having this type of v-1 characteristic are given in Figs. 5 and 6.**

The ladder network of Fig. 5a is easily analyzed by the breakpoint method.
The results of this analysis are given in Figs. 5b and 5c. The states of
the ideal diodes are indicated by 1l's and 0's, vwhere "1" indicates that
the diode is on, and "0" indicates that the diode is off,

A negative resistance, -R, is equivalent to a positive resistance in
parallel with a dependent current source as shown:

4 For further discussion of negative resistance, see [Ref. 2, pp. 437-438].
All numerical values given on illustrations will be in ohms, volts, and
amperes unless otherwise specified.

-6 -
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The network of Fig. 6a has an i-v characteristic that is single-valued,
but the corresponding v-i characteristic is multi-valued. Adding a depen-
dent current source of value vy and a l-ohm resistor to this network yields
the network of Fig. 6c. The added network brings about the following

transformation:

i =1, - v

iﬁ?(ilcos 4s° . v,8in 45°)

Vo =1+ vy VE?(ilcos 45° 4 v,8in 45°)

This transformation rotates the i-v characteristic (Fig. 6b) by 45° and
changes the scale by a factor of Viﬂ‘yielding the new i-v characteristic
(Fig. 6d). This new curve is multi-valued in both variables.

Examples of the second type of PWL characteristic, which is defined
for a semi-infinite range of values of the independent variable, are given
in Fig. 7. The network of Fig. Ta has a v-i characteristic (Fig. Tdb) that
is defined only for i > O. When the diode is off, v = -i, while when the
diode is on, v = +i. To verify that the characteristic is undefined for
1<0, let i = -io. If we assume that the diode is on, v = -io, which im-
plies that the voltage across the diode is negative, and the diode is off.
On the other hand, if we assume that the diode is off, v = +io, which im-
plies that the voltage across the diode is positive and the diode is on.
Since either assumption leads to & contradiction, we can only conclude
that the characteristic curve is undefined for i < 0. At this point, one
may be tempted to inquire what would happen if we actually built the net-
work and placed a negative current source across its terminals., The dif:
ficulty here results from over-idealization of the network model, 1In
practice, it is impossible to build a device which has a negative-
resistance characteristic over an infinite range of voltage since such a
device would have to be capable of supplying infinite power. Eventually,
for sufficiently large values of voltage, the negative-resistance device
must have positive resistance, which implies that the characteristic of
Fig. Tb must eventually double back if 1t is to represent a physically

realizable network.
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Another embarrassing question one might ask about the characteristic
of Fig. Tv is which branch of the curve would be followed if the input
current were increased starting with 1 = 0. In order to answer this
question, we must again modify our ideal model and consider the presence
of parasitic elements. The difficulty can be resolved if we place a
stray capacitance across the input terminals of the network, When the
current is increased, it will initially flow into the capacitor, start-
ing to charge it to a positive voltage. The diode will then start con-
ducting, which makes the circuit look like a l-ohm resistor in parallel
with the capacitor, and the upper part of the curve will be followed as
the current is increased.

Placing a current source of value ia in parallel with the network of
Fig. Ta, as shown in Fig. Tc, glves a characteristic curve (Fig. 7d) that
is defined only for i > i . Reversing the diode (Fig. Te) gives a char-
acteristic (Fig. Tf) defined only for i < 1.

Examples of the third type of PWL characteristic, which is defined
for only a finite range of values of the independent variable, are given
in Figs. 8 and 9. The network of Fig. 8a consists of the network of
Fig, 7a in series with the network of Fig. Te with ia = 1. Since the
current is the same in both series networks, the composite characteristic
is obtained by adding voltages that correspond to the same value of cur-
rent on the characteristics of Figs. Tb and 7f. Since adding something
undefined to something defined yields something undefined, the resulting
characteristic curve, Fig, 8b, is undefined for 1 <O or i > 1. In ad-
dition to being a closed loop, this characteristic has the interesting
property that it crosses itself without actually intersecting. It is im-
possible to go directly from segment AC to segment BD at.the crossover
point (v = 0 and 1 = %) because each segment corresponds to a different
state of the diodes (Fig. 8c) and there is no external means of causing
the diodes to change state while keeping both v and i constant. Further-
more, when we are operating at the crossover point, Jjust specifying v and
1 is insufficient to tell us what the internal state of the network is.

The network of Fig. 9a, which contalns a dependent current source and
a negative resistance, has a v-1 characteristic which is a closed paral-

lelogram (Fig. 94). When il > 0, diode D2 is on, and the network reduces
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(v)

Diode States| Range of
Segment D2 Dl current Voltage
AC 0 0 0<i<l]|v=(14) + (1) = 1-21
CD 1 0 02121‘v=(-1+1§+(-1)= -1
DB 1 1 0<1i<l]v=(-14)+ 1 = -l424
BA 0 1 011 |v=(11) + 1 = 1

(c)

FIG. 8. NETWORK WITH ITS V-1 CHARACTERISTIC DEFINED FOR A FINITE RANGE OF CURRENT.

to Fig. 9b. When 11 <0, D2 is off, and the network reduces to Fig. 9c
after transforming the dependent source and canceling the negative resist-
ance. The characteristic of Fig. 94 can then be derived from Fig. 9b and
9c, noting that D, is off when (il - 2v1) < 0 and D, is on when (11-2v1)

> 0,

Examples of networks whose characteristic curves have two distinct
branches are given in Figs. 10 and 11, The characteristics of the two
subnetworks which compose the network of Fig. 10a are shown as dashed
lines in Fig. 10b, Since the subnetworks are in series, the overall v-i
characteristic is obtained by adding voltages which correspond to the
same value of current on the dashed curves. The resulting curve has two
distinct branches, and the v-i characteristic is undefined for i > 0 or
-l < v < 41,

Addition of a diode, resistor, and current source to the network of
Fig. 9a ylelds the network of Fig. 1lla, The v-1 characteristic of this
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f2v|

O

o—e
{¢; iy >0, Dg on (¢) i <0, Dy off
Fy=2v=0 DIODE STATES| RANGE OF
v D, D, |CURRENT (amp) VOLTAGE ()
0 0 |-2<iy <0 | vy =1+,
0 ' '2 5_ " _<_ o y. L |
2 N ' ] 0<i; <2 vi = iyl
| 0 0<i; <2 vy = |
(e)

FIG. 9. NETWORK WITH A CLOSED-LOOP V-1 CHARACTERISTIC.
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network has two distinct branches (Fig. llc). When (il - 2v1) < 7/2, D3
is on, and the network reduces to Fig. 9a, which has the closed-loop v-i
characteristic shown above the dashed line in Fig., llc. When

(il - 2vl) > 1/2, D3 is off, and the network reduces to Fig. 1llb, which
has the monotonic v-i characteristic shown below the dashed line,

The above examples illustrate some of the many types of v-i character-
istics that resistive PWL networks can have, Any method of analysis that
is to be generally applicable to PWL networks containing controlled
sources or negative resistances must be capable of handling characteristic
curves that are multi-valued and that may be undefined for some regions
of the variables. Before developing methods of analysis, mathematical
representations of PWL curves will be formulated.

B. REPRESENTATION OF PWL CURVES BY PWL OPERATORS

A straightforward way to describe a PWL curve is to list the linear
equation for each section of the curve, together with the range over
vhich this equation is valid. This method of description is adequate for
all types of PWL curves, including multi-valued curves, Examples of this
type of representation are given in Figs. S5c and e,

A PWL curve with n linear sections, which is defined for all values
of x, can be specified by the following equations:

y=gq) +rXx (xsbl)

Yy =qp +TpX (f betveen b, and b,)

Jo=q + X (? between b, _, and bk) (1)
y

q, + ;X (% Z'bn_l)

where 9 is the y-intercept of the kth section,
Ty is the slope of the kth section, and
h

b, 1is the abc%gsa of the intersection of the kt section and the
k
(k+1) " section.

The equations of the sections are listed in the order in which they oc-

cur as the PWL curve 1s traced out, starting at the left, When X = bk’

- 14 -



(a)

FIG. 10. NETWORK WITH A V-I CHARACTERISTIC
HAVING TWO DISTINCT BRANCHES.

() (1j-2v)) >0
D. on, .. offt

FIG. 11. NETWORK WITH A V-1 CHARACTERISTIC RAVING TWO DISTINCT BRANCHES,
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Yo=ap + b = Q. + T aby (2)

Solving for the kth breakpoint yields

Uy ~ Y
L = (3)
k k+l

b

Since the breakpoints can be calculated in terms of the slopes and inter-
cepts, it is unnecessary to specify the breakpoints separately, and the
above set of equations can be written in the following abbreviated form

y = qk’ rk (x) - A(x) (h)

The array of n intercepts and slopes, A, will be called an Ef&_order gg&

*
operator . A PWL operator can be thought of as a concise mathematical
representation of a PWL curve, A FWL operator contains the minimum amount
of information necessary to describe a PWL curve since two pieces of in-

formation are necessary to determine each line segment. The only re-
strictions on the PWL curve are that it be defined for all values of the
independent variable and that all of the slopes be finite.** The curve
may have negative slopes, may be multi-valued, or even may intersect it-
self, ’

Given a PWL curve or the equations which describe it, one can find
the corresponding PWL operator; or given a PWL operator, one can find the
corresponding PWL curve and the equations which describe it, To determine
the FWL operator which represents a given PWL curve, start with the left-
most linear section, follow the curve, and write down the intercept and
slope of each section in the order in which the sections are encountered,

For example, the curve of Fig. 5b 1s represented by the PWL operator
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I

'11 'ﬁ'
5, 2

A= 2, (5)
8/3,
o,

1
1/3
1

To reconstruct a PWL curve from a PWL operator, one possible procedure is:

1. Calculate the breakpoints by Eq. (3).
2. Calculate the value of y at each breakpoint by Eq. (2).

3. Plot these points and Join each successive pair of points by a line
segment.

L4, Drav a line with slope r

at bl.

5. Draw a line with slope r starting at the right of b and termin-
n n-1
ating at bn-l'

The above procedure determines a unique PWL curve from a given PWL

1 starting at the left of bl and terminating

operator. For example, if

B=| 0,-1 (6)

the breakpoints are calculated by Eq. (3) as

by =0, b, =k b

1 = 2, bh=l+

3

The values of y at the breakpoints are calculated by Eq. (2) as

yl=3, ya’ h’ y3='21y)+=2

Capital letters will be used to designate PWL operators and small
letters will be used for variables and constants throughout this report.

* Modified forms of PWL operators will be introduced later in order to

eliminate these restrictions.
-17 -



The resulting PWL curve (Fig. 12) can be described by the equations

Y= 3+x/2 <
y= 3-x/k 4 <x<
y = -x b<x<
Yy = -6 + 2x 2 < sh
y=-2‘+x us
y
6!
- s 8 x

FIG. 12.

SELF- INTERSECTING PWL CURVE.

When a PWL operator operates on a constant, the result may be a single
numerical value or a set of values, depending on whether the PWL curve
1s single- or multi-valued at the point in question. For B defined by
Eq. (6), B(5) = 3, but B(-1) = 1, 5/2, or 13/k,

The use of PWL operators to represent curves that are defined for
a semi-infinite range of x requires a slight modification in the nota-
tion. A curve that is defined only for x < Xg starts on the left and
ends on the left. A PWL operator in the previously defined form could
be used to represent the curve, except that the last section applies to
n-l instead of x > bn-l' To indicate this difference, a
bar is placed on the right bracket of the PWL operator opposite the Eﬂﬁﬁ

the range x S.b

intercept and slope. For example, Fig. 7f is represented by
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The convention wlll be established that, whenever a PWL curve both begins
and ends on the left, the lower of the two end sections will be listed
first in the PWL operator.

When a PWL curve is defined only for x > Xg) it starts on the right
and ends on the right, To indicate that the first section applies to
the range x Z'bl instead of x S'bl, a bar is placed on the right bracket
of the PWL operator opposite the first intercept and slope. For this
type of PWL curve, the lower of the two end sections will also be listed
first in the PWL operator. For example, Fig. 7d is represented by

1,-1
V= (-1a 1) &)

When vorking with PWL curves that are defined for all values of x,
it is sometimes convenient to list the sections in the PWL operator in
reverse order, starting on the right and ending on the left, In this
case, a bar is placed opposite both the first and last sections in the
PWL operator. Thus Eq. (5) could be revwritten as

0, 1
8/3, 1/3
A= 2, 1
5, 2
-1, 1/2
To indicate that a PWL curve is defined for only a finite range of x
and that the curve has a closed-loop form, a double parenthesis will be
placed on the right side of the corresponding PWL operator. For example,

Fig. 94 is represented by

-1’0
-1

v=l 1ol D
1, 1
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C. AN ALTERNATE FORM OF PWL OPERATORS

When PWL operators are manipulated on a digital computer, an alter-
nate representation turns out to be convenient. Instead of specifying a
PWL operator in terms of intercepts and slopes, it is possible to work
with breakpoints. Listing the coordinates of the breakpoints in order
will determine all of the sections of a PWL curve except the two end sec-
tions. To determine these end sections, additional information must be
supplied. Specifying the slope of each end segment would be adequate
but would lead to a PWL operator composed of n-l1 breakpoints and two
slopes. This unsymmetrical form would result in complications when de-
riving rules for algebraic operations with PWL operators, Instead of
specifying the slope of an end section, the coordinates of a point on
this section can be supplied. This procedure leads to the representation

of an n-section PWL curve by a PWL operator of the form
r -
X5 Yo

o LARAY
A = *k} yk (7)

L*n’ ynJ

where (xk, yk) are the coordinates of the k' breakpoint (k = 1,2,...,n-1),

(xo, yo) are the coordinates of a point on the first section, and
(xh’ yn) are the coordinates of a point on the last section.

The points on the end sections may be chosen arbitrarily, although for
numerical work it is desirable to choose tiese points sufficiently far
from the nearest breakpoints so that the slopes of the end sections can
be determined accurately. Square brackets will be used to enclose the
breakpoint form of PWL operator, which is defined above, to distinguish
it from the slope-intercept form, which will be enclosed by parentheses,

The breakpoint form has the disadvantage of requiring n+l pairs of num-
bers to represent an n-section PWL curve compared with the slope-intercept
form, vwhich requires only n pairs. However, with the breakpoint form, it
1s unnecessary to use bars on the right bracket to indicate when a PWL

curve starts on the right or ends on the left. If Xy < X

19 the curve
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starts on the left, and if X, > Xy, the curve starts on the right. If

< X0 the curve ends on the right, and if X, > X the curve ends

%h-1
on the left,

Conversion from one form of PWL operator to the other is easy. Start-
ing with the breakpoint form, Eq. (7), the slopes and intercepts for the

other form, Eq, (4), are given by

-1

Yo ” Jx-1
= — 8
KTRTRG ©
Qe =Yy - TX (9)

To convert the slope-intercept form to the breakpoint form, proceed as
follows:

1. Calculate the b 's by Eq. (3).
2. Choose x, < b, (> b, if the PWL curve starts on the right).
3. Set x, = b, (for k = 1,2,...,n-1).

L. Choose x, > bn-l (< bn-l if the PWL curve ends on the left).
5. Set Yo = g + TX,e

6. Set y, = q + X (for k = 1,2,...,n).

Written in breakpoint form, Eqs. (5) and (6) become

6,-1) %, 0|
43 3
A= 1: 3 and B = 2:.2
¥k ¥, 2

6, 6| 6 )

These PWL operators can easily be written down by inspection of Figs. Sb
and 12,

If A operating on x yields a single value for every value of x, A
will be called a single-valued FWL operator. If A(x) represents a mono-
tonic function of x, A will be called a monotonic FWL operator. If A is
a single-valued PWL operator in breakpoint form,
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ny if x = x.1
J.co, Y, Yy + (x -x:l)r‘J if XJ_1<X<XJ
A(x) = (x) =< Y, + (x - xc’)rl if x <% (10)
v .
0’ 7n Y, + (x - xn)rn 1f x > x,
Yy =7 -
where r, = _l____i:l
JoX o Na

The various forms of PWL operators that have been defined are sum-

marized in Table 1.

The type designation indicates whether the PWL

curves start at the left or right and whether they end at the left or

right, e.g., type IR starts at the left and ends at the right.

It is

unnecessary to use bars on the brackets of the breakpoint form to dis-

tinguish the different types because there can never be any ambiguity

as to the directions of the end segments.

TABLE 1.

TYPES OF PWL OPERATORS

PWL Operator Type Designation

Form of Operator

and Form of Curve Slope-Iatercept Breakpoint
LR | % ., rp 2, ¥
Py - : :
- v Ty :.o Yy
(x,< 27, x3.7 < x5)
LL \"" .‘l. rl Txoo Yy
S : :
/{// S Tp Xar Yn
LB '  (xo < xp %1 > x) |
4. T} [Ro: Y
e : :
<\ 9, Ty E.. Ya
L L (%o > x), -3 < =) |
\r,. . i %0+ Yo |
\\‘ r S Tp L"n' Ya
~ (xg > xq, x5.1 > xg)
‘Closed
loop r"' ‘1

MU | KR
(én' 'uj» _;u' Yl

('o = Xpo Yo " Yq)
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D. REPRESENTATION OF SOURCES AND DIODES BY FWL OPERATORS

When a section of a PWL curve has infinite slope, there is no diffi-
culty representing the curve in terms of PWL operators in the breakpoint
form, but some trouble arises vhen ve try to represent it in slope-
intercept form., We can get around this difficulty by assuming that the
slope is very large, but still finite, and later taking the limit as
the slope becomes infinite,

The v-i characteristic of an ideal current source has an infinite
slope as shown in Fig. 13. If the current source has a very large shunt
resistance L, then the characteristic intersects the v.axis at v = -1°L.
In terms of PWL operators, the voltage across the current source is

va (-101.,1.) (1)

If ve let L » o, We can express the characteristic of the ideal current
source symbolically as

v = (-1em) (1) (11)
Similarly, for an ideal voltage source of value e, we will write

1= 1o (-eL,L) (v) = (-emm) (v) (12)

: ‘ ‘o id

FIG. 13. V-1 CHARACTERISTIC OF IDEAL CURRENT SOURCE.

-23 -



The voltage across the source is
vae + 01 =(e,0) (1) (13)
In terms of FWL operators, the v-i characteristic of a diode with

forward resistance € and reverse resistance L is

v (o) @

By letting € + O and L + », we can express the ideal diode character-
istic of Fig. 3 symbolically as

v (o3) ® (28)

The series diode network of Fig. li and its dual, the parallel diode
network of Fig. 15, occur frequently as bullding blocks in resistive
diode networks. In terms of FWL operators, the v-i characteristics of
these netvorks are respectively

v-D“: (:: f,‘) (1) = (:: ‘;) (1) (15)

v .e.n.: ( -io’ G) (1) ] ( o, 0) (1) (16)
-1.8 & -108; g

By considering the two states of the diode, the PWL operator that charac-
terizes a netvork of either type can be written down by inspection of the
network. When solving some types of PWL network problems, it is con-
venient to work in terms of € and L, and then let € > 0 and L +» » efter
the solution has been obtained.

E. STERN'S METHOD FOR REPRESENTATION OF FWL FUNCTIONS

Stern [Refs. h,s] represents single-valued PWL functions in terms of
transformations g' and @, which have the following properties:

(xl,xa,...,x‘n) #" = maximum value of X9 Xps eeey 804 X (17)

(xl,xa,...,xn) g~ = minimmm value of Xys Xpy +ee, and x (18)
Using these transformations, the PWL function of Fig. 5b is

va(-1414/2,1, (5+21,24+1,8/3+1/3)¢ )¢ (19)
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' /<
. SLOPE = r

10 4+

FIG. 14. SERIES DIODE NETWORK AND V-I CHARACTERISTIC.

SLOPE = ¢

FIG. 1S. PARALLEL DIODE NETWORK AND V-I CHARACTERISTIC.

Any single-valued PWL function of x can be represented by a generaliza-
tion of one of the following forms:

+ - + -
y = (("'((xll)xlal"'ixh)ﬂ )x21’x22)°"’x2b)f)000)¢ ’xnl,xﬂ’...’xnﬂ')f
or (20)
¢ + g

y = [("u”‘la""’xn)ﬂ ’(xél’x22’°"’x2b)¢ ""’(xnl’xna""’xnl)p ]f
(208)
vhere x, 3 is a linear function of x. Since the transformations f
and g~ yield a single value, multi-valued curves cannot be expressed in
this form. The form and complexity of a PWL function expressed in terms
of g and g~ generally depend on the shape of the PWL curve as well as

on the number of sections. For example, if we change the last section
in Fig. 5b from v = 1 to v = 2 + 1/2, Eq. (19) must be replaced by

v = {[-1 +1/2, (5+21, 2+ 1)) &, (8/3 +4/3, 2 + 1/2)¢*} g (21)
21
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Any PWL curve which can be represented in Stern's notatiog can be
represented in terms of PWL operators, but not conversely, @ transfor-
mations that contain two arguments can be converted to FWL operators by
the following relations:

(x,y)8" = (8; 2) (x-y)+y-= (8; 2) (y -x) +x (22)
g = (23) Goneys (230G -0ex @)

These relations can readily be verified by considering the two possible
cases, x >y and x <y, For example, if x > y, Eq. 22 becomes

Xx=l(x-y)+y=0(y-x)+x

+
A ¢ transformation that +conuins more than two arguments can first be

reduced to a series of @ transformations, each of which has only two
arguments, by using the relationship

* L S -
(%) %p0Xgp 00 00X )07 = ((oon((x)p%)87,%3)87500 )07, )87 (24)

Since it is pouigla to represent multi-valued FWL curves by WL opera-
tors but not by @~ transformations, it is not always Pgesidble to convert
a PWL operator to an equivalent expression involving @ transforsations.

An algebraic method for analyzing FWL networks, based on Stern's
notation, is discussed in Appendix A. The relative advantages and dis-
advantages of Stern's methods and PWL-operator methods are discussed in
Section X. B. A representation for FWL curves in terms of absolute
values is discussed in Appendix B,
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III. ALGEBRAIC OPERATIONS WITH PWL OPERATORS

PWL operators have been defined to represent the characteristics of
PWL elements in a compact form. The next step in formwlating a system-
atic analysis of PWL networks is to define algebraic operations with FWL
operators, Inversion, addition, multiplication, and other operations
will be defined for PWL operators in both slope-intercept and breakpoint
forms, The algebraic properties of these operations will be examined.

A. INVERSION OF PWL OPERATORS

Given the PWL operator which represents the v-i characteristic of a
PWL resistor, a method is needed for determining the PWL operator that
represents the corresponding i-v characteristic. In order to solve an
equation of the form y = A(x) for x, we will define the inverse >f the
PWL operator, A'l, 8o that x = A-l(y). Fig. 16 shows a FWL curve and
its inverse. Graphically, finding the inverse of a PWL curve amounts to
interchanging the x and y axes by reflecting the curve about a h5° line
drawn through the origin.

1l. Inversion in Slope-Intercegt Form

For a BWL curve that consists of a single section,
y = Q.k + rkx = (q'k,rk) (X)

Solving this linear equation for x yields

xs-:—15+l—y-(-§5,£- (¥)

k Tk kK Tk

In terms of PWL operators,

- QP 21
(qk,rk) l. (-é ’ ;.; ‘ (25)

To generalize this inversion procedure to an nth-order PWL opera-
tor, Eq. (25) is applied to each section. If
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ql’rl
A = | qz,r2

Ty

represents a PWL curve which starts in the third quadrant and ends in
the first quadrant, then

A U
AT = -qe/ra, l/r2 (26)
/T l/rn

Since the intercept and slope of each section 1s correct and the sections
are listed in the correct order, Eq. (26) must be the correct representa-
tion of the inverse. For Fig. 16,

-10 ¢

FIG. 16. A PWL CURVE AND ITS INVERSE.
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-12/5, 2/5 6, 5/2
A= -5, 3 and At o (53, 13

6, 1/k 24, L

If a PWL curve starts or ends in the first or third quadrant, the
inverse curve starts or ends in the same quadrant as the original curve;
however, if the curve starts or ends in the second or fourth quadrant,
the inverse curve starts or ends in the opposite quadrant. When a PWL
curve starts or ends in the second or fourth quadrant, the initial or
final slope is negative, and the corresponding PWL operator has rl <0
or r_ < 0, In this case, the inverse is still formed as in Eq.(26L but
bars must be added to (or omitted from) the right bracket of the inverse

PWL operator according to the following rules:
*
If r; <0, add (or omit) a bar opposite the first section.
. )
If r, <0, add (or omit) a bar opposite the last section.

Examples of the application of these rules are

-1 -1

6, 2 -3, 1/2 0,-1/2 0, -2
0, 1/2 = o, 2 |, 0, 1/2 = 0, 2

1/2,-1/2 1, -2 2, 1 2, 1
1,-1/2\"t 2, -2 -3/2, -3

-1, -1 = -1, -1 = -1, -1

-2,-1/3 -3/2, -3 2, -2

When PWL curves are classified according to the quadrants in
which the curves begin and end, there are 10 possible types (Fig. 17).
By reflecting these curves about a hso line, it is seen that curves of
types (a), (b), (g), and (h) have inverses of the same type as the
original curve, but curves of types (c) and (d), (e) and (f), and (1)

and (J) are inverses of each other.

* Omit the bar from the inverse if the original PWL operator has a bar
in the corresponding position.
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(9) (h)

(1)
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(J)

FIG. 17.

2, Inversion in Brggggoint Form

INITIAL AND FINAL SEGMENTS FOR TEN TYPES OF PWL CURVES.

The inverse of a PWL operator in breakpoint form is easy to find.

Since finding the inverse of a PWL curve amounts to interchanging the

x- and y-coordinates of every point, interchanging the x- and y-coordinates
of the breakpoints will give the coordinates of the breakpoints of the

inverse. Therefore,

-1

x
n’Yn

For the curve of Fig. 16,

-30 -
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-9, "67 -6’ -9

A= 1, -2 and Al 2, 1
b, 71 T, 4
10,8.5 8.5, 10

The inverse of a PWL curve can always be found graphically by re-
flecting the curve about a h5° line. The lnverse of a PWL operator in
breakpoint form can always be found by Eq.(27). The inverse of a PWL
operator in slope-intercept form can always be found by Eq.(26), pro-
vided that all of the slopes are non-zero, If any slope is zero, its
reciprocal is infinite, and a special method is needed to express the in-
verse in slope-intercept form, If a section has zero slope, we can re-
Place 0 with € and take the limit as € > O after the inversion has been
carried out, Symbolically, we can write

P o (@)= 55 (R, D) = 10 (Al 1) = ().

(qio)- = e_)o €

B. ADDITION OF PWL OPERATORS

When two PWL resistors in series carry a current i, the voltage ac-

cross the combination is

V=v, +V, =R (1) + 32 (1)

where Rl and R2 are the PWL operators that represent the characteristics
of the two resistors. We will define addition of PWL operators so that

vwe can write
v =Ry (1) + Ry (1) = (R +By) (1)
Addition will first be defined for single-valued PWL operators, and later

the definition will be extended to multi-valued operators. The sum of
two single-valued PWL operators is defined so that

A(x) + B(x) = (A + B) (x) (28)

for all values of x.
Graphical addition of PWL curves is illustrated in Fig. 18. Each
value of y on the sum curve is obtained by adding the values of y on

the curves being added which correspond to the same value of x.
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FIG. 18. ADDITION OF PWL CURVES.

Since a PWL curve is determined by its breakpoints, it is necessary only to
carry out the addition for values of x where either curve has a break-
point and for one point on each end segment,

1. Addition in Slope-Intercept Form

For the case where each PWL curve has only a single section with

vy =y +rgx= (@ 1) ()

yz = qk + rkx = (qk) rk) (x)
the sum is
vyt = (ay+a) + (ry+n) x=(a; +q ry+1,) (x)

In terms of PWL operators,

(app ry) + (@, 1) = (a4 + @, 7y + 1) (29)
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In words, Eq. (29) can be stated as the intercept of the sum is the sum
of the intercepts, and the slope of the sum is the sum of the slopes.
The sum of a first-order PWL operator and an nth-order PWL operator can
be found by applying Eq. (29) n times:

95 U+, T+
(qo, ro) + : = : (29a)
U Tp U, T,

To generalize the addition procedure to higher-order PWL operators,
palrs of sections are selected according to the relative order of the
breakpoints, and each pair is added by Eq. (29). After a pair of sec-
tions has been added, the breakpoints that follow those sections are com-
pared, and the lesser breakpoint is selected. If the breakpoint of A
has been chosen, we move down* to the next section of A, or if the break-
point of B has been chosen, we move down to the next section of B. For

Fig. 18,
0,1/2 1, 2\
A= (l: { B = 2:-1/l+
2,1/2 -3, 1
0,/2) , 1,2\, 1,5/2 (30)
A+B= [1,1 5 * 2,-1/4} , - 2,1/k4
2,1/2 -3,1 3:3/t

To find the sum, the breakpoints of A and B are first calculated by

EqQ. (3) and listed beside the PWL operators. The first sections of both
operators are added to get the first section of the sum. Since -4 < -2,
ve move to the next section of B and add (0,4) and (2,-}) to get (2,1).

Next, since -2 < 4, we add the next section of A to the same section of

B, vhich gives (1,1) + (2,-}) = (3,3/4). This process is continued un-

til finally we add the two last sections to get the last section of the

sum,

Moving down the column in a single-valued PWL operator corresponds to
moving to the right along the corresponding PWL curve.
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The rule for addition of single-valued PWL operators in slope-
intercept form can be stated formally as follows., The sum of two PWL

operators
Q3573 915T01
A = . and B = .
Um? Fim UonsFon

is a PWL operator of the form

4310731
C = A+B = : (31)
Q3‘)r3‘
vhere q31 = qlJ + Q5 and r31 = rlJ + rak with J and k deter-

mined as follows:

1, For i =1, J=k=1
2. If for 1 =1i', J=J' and k = k', then for 1 =1' +1,
J=J3'+1, k=k' it le, < b2k

J=3'41, kak' 41 Af by, =Dy,
3=3, k=k'+1  if by, >by,
3, For the last section (1 =£), J=m and k = n,

The breakpoints in the above rule are given by

q [ = Qy 4
b ——llLl——lL (J' Il,a’ono,m'l), b = 0

=
L' Ty T e 1m

B kra1 - Lok
bak' = rJ (k' = 1,2,...,1'1-1), b2n = 0

2k' " T2,k'4l

When two successive sections of C have the same intercepts and the

same slopes, both sections represent the same straight line, and one of
the sections should be deleted since it is redundant, Note that m

does not have to equal n, and £ will generally be greater than either

m or n.
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2., Addition in Breakpoint Form

Addition of single-valued PWL operators in breakpoint form can be
expressed by the equation

%0’ Y10 *20? Y20 %307 Y30

c = A + B = : + : = i :
X1m’ Y1m | Xon? Yon X380 Y38
(32)

The x-column of C is formed as follows:

1, x3o = minimum of xlo and x20

2. To obtain x3l,...,x3"_l arrange xll’f"’xl,m-l and le,...,x2,n_l
in increasing order.
3. X3y = maximum of Xm and Xon.

The entries in the y-column of C are

where A(x31) and B(x3i) are evaluated by interpolation between the break-

points using Eq. (10). For Fig. 18, F6 3
-6, -

-ll»,-a -l‘;"‘l 2 -u’ } i

- -2,=1 =%y 3 = -2’3 2

A+B 2, 3 i + h,l"; 2,9/2
b, & 6, 3 ’

6, B_J

For convenience in interpolation, the slopes of the sections can be list-
ed beside A and B as shown above, A typical calculation for determina-
tion of y3i is

Yip = A(-2) + B(-2) = -1 + 3 + [-2-(-W))(4) = 3/2

During the addition process, redundant breakpoints may dbe intro-
duced. If

(x441 = %yq) (0 = ¥y4) = (xy - xy 1) (yaq = ¥y5.) (33)

the point (xd,yd) lies on the line joining (x and (x

J-l,yJ -l) J+l,yd+l)

and therefore may be deleted,
- 35 -



C. MULTIPLICATION OF PWL OPERATORS

Inversion and addition of PWL operators have been defined, and now a
multiplication operation will be introduced. Consider two PWL networks
connected in cascade (Fig. 19), and assume that the loading effect of the
second network on the first is negligible., If the transfer characteris-
tics of the networks are represented by PWL operators with v, = B(vl) and
v, = A(ve), vwe would like to define multiplication of PWL operators so

3
that we can substitute B(vl) for v, and write vy = A.B(vl). Then the

product AB would represent the oveiall transfer characteristic of the two
networks in cascade. In general, multiplication of PWL operators will be
defined so that if z = A(y) and y = B(x), then z = AB(x). Note that this
is not ordinary multiplication, but 1s a substitution type of operation.
Graphical multiplication of FWL curves is illustrated in Fig. 20.

Starting with plots of z v8 y and y vs x, the object of the multiplica-
tion process is to eliminate y and obtain a plot of z vs x. When forming
the product AB, B~ is plotted below A so that the common variable, y,
can be measured on the same horizontal scale for both curves, Since x is
measured on a vertical scale for B'1 and on a horizontal scale for AB,
the two scales for x can be related by reflection in a h5° line. For a
given value of y, the corresponding values of z and x can be determined
graphically and plotted on the product curve. The graphical construction
required to do this is shown for typical points. Each point on the AB
curve is determined as the intersection of two dashed lines. Since the
breakpoints determine the PWL curve, this procedure need be carried out

only at the breakpoints and at one point on each end segment.

[ SN

¥ oL ¥ me [ ¢

Y neTwork | Ya = 8(vy) | werwonk vs = Alva) = Ab(vy)
[ e | '

FIG. 19. CASCADE CONNECTION OF PWL NETWORKS.
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REFLECTION OF

FIG. 20. GRAPHICAL MULTIPLICATION OF PWL CURVES.
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1. Multiplication in Slope-Intercept Form

The product of two PWL operators, AB, will first be defined for

the case where A and B'l are single-valued, and later the definition will
be extended to the multi-valued case.

For the case where each PWL opera-
tor has only a single section with

2 =qy+Tyy

(a,7y) ()

y = qk + rkx (q'k’rk) (X)

substituting the second equation into the first yields

z = (q + ryq) + (ryr)x = (q, + 7yq,, 7y7,) (%) = (g7,) (q7,) (x)

In terms of PWL operators,

(QJ;I‘J) (qk,rk) = (qJ + TsQys rJrk)

(3k)
To multiply a first order FWL operator by an nth order operator,
Eq.(34) is applied n times:
9, T, Q, + Ty, T Iy
(agr 7)) [ - = (.0 ° (35)
4 Ty U * oy To'n

The product of an nth

-order PWL operator times a first-order operator is
obtained in a similar manner:

Q0 Ty Y + T I N7,
: (@, ) = | . ° (36)
Ty

+r rr
a4, n %’ *n¥o

It may be necessary to add bars to the right bracket of the product if
r s Tys OF T is negative.

The multiplication procedure can be generalized to higher-order
PWL operators in a manner similar to the addition procedure. Pairs of
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sections are selected according to the relative order of the breakpoints,
and each pair is multiplied by using Eq. (34). From the graphical con-
struction, 1t is clear that we must compare breakpoints of A and B'l
instead of A and B as was done in the addition procedure. The break-
points of B'l, i.e., the y-coordinates of the breakpoints of B, can be
found by the relation

(37)

k clk k'k k r r -r

q -q q,r -9 r
o = +rb =q,,+rk k+%rk =klu»l k+l 'k
k k+l k+1 k

For Fig. 20,

'hrl/)* l") 2

A= 3, 2 B = 1, 1
2, 1 3/2,1/2
-3,1/2

<l4,1/k [ 4, 2 11, b

AB = 3, 2 b2 1, 1| = 5, 2
2, 1/ 2\3/2,12 3, 1
7/2,1/2

To find the product, the b 's are calculated by Eq. (3) and listed te-
side A, and the ck's are calculated by Eq. (37) and listed on the left
of B, To get the first section of the product, the first sections of A
and B are multiplied using Eq. (34). Since -4 < -2, we move to the
next section of A and multiply (3,2) by (4,2) to get (11,4). Next,
since -2 < -1, we multiply the same section of A by the next section of
B to get (3,2) (1,1) = (5,2). This process is continued until finally
we multiply the last sections of A and B to get the last section of AB.

The rule for multiplying a single-valued PWL operator by a PWL
operator whose inverse is single-valued can now be stated. The product
is given by

970713 U127 931733
C=AB=| : = |2 (38)
U Tim Aon’ T2 340734

where q3i = qu + rl,jqzk and 1'31 = rljrzk’
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with j and k determined in the same manner as for the addition rule,

Eq. (31), except that b, is replaced by

kl

. .r B = r
R A W W A Y (k' = 1,2,...,0-1), ¢ =
r2,k'+l - rzk' :

c

kl

If B has a bar on the right bracket, C will have a bar in the correspond-

ing position. For example,
O, 2 o,-oe- 0,-.1"
0,-5 0, 2 0, 1
0,05 o’ -5 o’-2‘5
If B starts in the second quadrant and ends in the fourth,before carry-

ing out the multiplication, the sections of B in Eq. (38) must be listed
in reverse order so that the ck's will increase with k. For example,

-1,-1/2 1/2,-1/4

0, 1 1,-1/2 0,1), 2 -1,-1/2 0,-1 0,-1/2
(0,1/2 0,-1 = (0,1/2 2| 01 0,-1/2 |=\ o0,-1

-1,-1/2 1,-1/2 /2,-1/4 -1,-1/2

2, Multiplication in Breakpoint Form

If A and B™' are single-valued PWL operators in breakpoint form,
we can list the rows of A and B in an order such that the first column
of A and the second column of B both increase as we move down the column.
The product AB can then be expressed in the form

*30° Y30

(39)

X3p7 Y3

To find C, an auxiliary Z-colwmn is first constructed as follows:

1. zl = minimum of xlo and y20.

2. To obtain 255 23, veey zz_l, arrange X,;, X;,, o) xl,m-l and
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.‘121, y22, csey ya’ n-1 in increasing order,
3. zJe = maximum of x’].m and x2n.

. Then to form C,
Xy = B-l (zi) and y31 = A(zi) (1 =0,1,2,000,4) (39a)

are evaluated by interpolation between the breakpoints using Bq. (34).
For the example of Fig. 20,

-8, -6 by <l by b
A= ‘h: =5 B = -3,-2 B-l - -2,-3
41,1 | 1, 2 2, 1
. 2, & 3 3 33
8] 6,6
) -4 -4,-5
: 2 -3,-1
Z = -1 and C=1}-2,1
s 2 1, b
i 3- L.3’ 5-

A typical calculation for determining one of the rows of C is
-1
X3p =B (-2) =3
xo=A(2) =S5+[-2-(W))2=-

Extension of the multiplication procedure to multi-valued FWL operators
will be considered in Section III. J.

D. OPERATIONS WITH CONSTANTS

In the solution of networks that contain both linear and FWL elements,
it is frequently necessary to add a FWL operator to a constant or to mul-
tiply a FWL operator by a constant. In such cases, we will usually write
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a + A, 8A, and Aa as abbreviations for (0,a) + A, (0,a)A, and A(O,a)

respectively. When the FWL operator is in slope-intercept form, the fol-
lowing rules are special cases of BEqs. (29a), (35), and (36);

( q_l, rl+a
Y Tt

When the PWL operator is

_ M

q,, ar
(i.,. -

% o
L( ;’1’ ar

in breakpoint form, these rules decome

-y

Yo

hach

yn+un

Wyl

ay

(ko)

(k)

(42)

(kOw)

(k1)

(k2a)



E. THE IDENTITY OPERATOR

The PWL operator, (0,1), will be called the identity operator and given
the special symbol I. The identity operator operating on anything gives
back the same thing,

I(x) = (0,1) (x) =0 + x = x
For every PWL operator, A,
Al = IA = A (43)
since for every section
(a57,) (0,1) = (0,1) (g,7) = (a7,

If y = A(x) 1s defined for all values of Xx,

x = A7 (y) = A™°A(x) = I(x), 80 A eI
If x = A"X(y) is defined for all values of y,
=1 -1
Y= Ax) = AT (y) = I(y), 5o A" = I

It follows that if y = A(x) is defined for all values of x and x = A'l(y)
is defined for all values of y, then

Mmtaataar ()

This equation is easily verified for a first-order PWL operator,
A= (q, r):

M-l = (qk’ rk) ('qk/rk) l/rk) = (qk - q'k’ rk/rk) = (0,1) = I

A = (cq/ry, Yr) (g 1) = (a/n +a/r, T /r) =(0,1) =1

For nth-order PWL operators, the same result is obtained for every sec-
tion so that the product of an operator and its inverse reduces to the

identity. 43



F. NBEGATION AND SUBTRACTION

The negative of a PWL operator will be defined so that if y = A(x),
then -y = (-A) (x). The negative of a PWL curve is found graphically by
interchanging y and -y by reflecting the curve about the x-axis. This
reﬂoction is equivalent to changing the sign of every slope and inter-
cept., Therefore, if

4, 5y "ql)"rl
A= : then -A = (0,-1)A = . (b5)
q, rn 4Ty

or, in breakpoint notation, if

Xy? yo x "yo .
A = . then “A = : (46)
Xa? Y *n'Vn
Subtraction of WL operators is then defined by
A-Bs=As+ (-B) (7)

i.e., to subtract B from A, add the negative of B to A.

It is useful to define a second type of negation with A(-x) = A(x).
Graphically, this operation is performed by interchanging x and -x by
reflecting the FWL curve about the y-axis. Since -x = (0,-1)(x),
A(-x) = A(0,-1)(x) = A(x), so A = A(0,-1). If

9 5 YTy % Ta
A= | then A= | : - : (48)
W " W Ty 90Ty
or, in breakpoint notation, if
X Yo “Xn» Ip
A= | then K= | : (49)
xn: yn 'xop yo .



The reordering of the sections is performed so that the sections will be
listed in the customary order, i.e., from left to right.
Two useful relations which involve the two types of negation are
A(-B) = A(0,-1) B = AB (50)

and (B)™ = [A0,-1)]7F = (0,-1a7t = -(a™h) (50a)

G. ASSOCIATIVE, COMMUTATIVE, AND DISTRIBUTIVE LAWS

Both the associative and commutative laws are valid for addition of
PWL operators. Since

[A(x) + B(x)] + C(x) = A(x) + [B(x) + ¢(x)] for all x,
it follows that
(A+B)+C=A+(B+C) (associative law), (51)
and since
A(x) + B(x) = B(x) + A(x) for all x,
it follows that
A+B=B4+A (commutative law), (52)

For multiplication of PWL operators, the associative law is valid,
but the commutative law is not. Since

A {B[C(x)]}

it follows that

A[BC(x)] = AB[c(x)] for all x,

A(BC) = (AB)C (associative law), (53)
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The associative law can be verified directly for first-order PWL opera-
tors. If A = (a;,8,), B = (b),b,), and C = (cy,c5),

A(BC) = (a),8y) (by +Bpe),Bpco) = (8) + 8y + 8gbycy, a5bcp)
and (AB)C = (81 +a5b), aaba) (Cl,cz) = (al + 850y + aboc,, aabacz)

The commutative law does not hold in general for multiplication. Even
for first-order PWL operators,

AB = (al, a2) (bl, b2) (al + a5by, °2b2)

but BA = (bl’ ba) (al’ 8‘2)

(bl + boa), a2b2)

and AB ¢ BA,

The right distributive law is valid for PWL operators, but the left
distributive law is not valid, i.e,,

(A + B)C = AC + BC (54)
but A(B + C) # AB + AC (55)

except in special cases. The validity of Eq. (54) follows from the way
in which addition is defined. From the definition of addition,

(A +B) (y) = A(y) + B(y)
Now, substituting C(x) for y,
(A + B)C(x) = AC(x) + BC(x) = (AC + BC) (x)
from which Eq. (54) follows. On the other hand, unless A is linear,

A(yy +¥5) £ A(yy) + Ay,)
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Iy, = B(x) and Y, = c(x),
A[B(x) + C(x)] f AB(x) + AC(x)
and A(B + C) (x) # (AB + AC) (x)

which shows that the left distributive law is generally not true.
The right distributive law can be verified directly for first-order
PWL operators. If A = (a;, &,), B = (b), by), and C = (c;, ¢,),

(A + B)C = (a,+b,, a2+b2) (cl,ca) = (al+bl+a2c1+b2cl, a202+b2c2) and
AC + BC = (a,+a,c,, 5202) + (bl+b2c1, byc,) = (a1+bl+a2cl+b2cl, a2cafb202)

The left distributive law is generally not true even for first-order
PWL operators:

*

A(B+C) = (al,aa) (bl+cl,b2+c2) = (al+a2bl+a2cl,32b2+a2c2) but
AB + AC = (al+a2bl,aeb2) + (al+aecl,a2c2) = (2al+azbl+a2c2,32b2+a2c2)

The only case in which the left distributive law holds is when A is a
constant, If A = (0,a),

(0,a) (B +C) = (0,a)B + (0,a)C

(56)
or a(B + C) = aB + aC

This relation must be true, since premultiplying by a constant merely
changes the vertical scale on the PWL curves.
A special left distributive law can be derived when A is of first-

order, If A= (al,ae), then

A(B +C) = (a;,0) (B +C) + (O,aa) (B +C)

= (a;,8,)B + (0,8,)C = AB + (0,8a,)C (57)
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H, SHIFTING OF PWL OPERATORS

Given an expression of the form y = A(x + b) where b is a constant,
we would like to find a new PWL operator, A, such that y = Ab(x). The
PWL curve that Ab represents can be obtained by shifting the PWL cur:;
for A a distance of b units to the left along the x-axis, For the k

section of A,
¥=(q 1) (x+®) =q +rb+rx=(q +rbd, r) (x) (58)

The shifting rule for an nth-order PWL operator is, therefore,

ql, rl q1+rlb, ry
A(x +b) = | (x +0) = | (x) = A(x)  (59)
Q. r, qn+rnb, rn

The kth breakpoint of Ab is

(qu+r,b) - (q, ., + r, . b) Q - q
Tk k+1 k+l _ X k1l _y - b -b (60)

Tyel - Tk Teel ~ Tk k

where b_1s the k" breakpoint of A, which indicates that all of the
breakpoints have been shifted b units to the left.

The shifting rule can be applied even if b is a variable instead of
a constant, but in this case the breakpoints of Ab are variable. Since
addition or multiplication of PWL operators can be carried out only if
the relative values of the breakpoints are known, it is usually not help-

ful to apply the shifting rule unless b is a known constant.

I. ADDITION OF MULTI-VALUED PWL OPERATORS

Addition of single-valued PWL operators has been previously defined,
We now wish to extend the definition of addition to include multi-valued
curves, First, the addition rule will be extended to the sum of a multi-
valued and a single-valued PWL operator, and then finally to the sum of

two multi-valued operators, In carrying out this extension, we want to
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make sure that the sum of two PWL operators which represent the charac-
teristics of PWL resistors correctly represents the characteristic of
the two resistors in series.

Some of the procedures that will be developed for addition and
multiplication of multi-valued PWL operators are fairly complicated to
carry out by hand; however, these procedures have been programmed for a
digital computer (see Chapter IX) so that multi-valued operators are as
easy to work with as single-valued operators when the computer is used.
For shorter problems where a computer is not worthwhile, rather than
learning the more complicated rules, it is often helpful to sketch the
curves as an aid in selecting sections to be added or multiplied.

Fig. 21 illustrates the addition of a multi.valued PWL curve to a
single-valued PWL curve. For a given value of x, the values of y on the
sum curve are obtained by adding each value of Yy to the corresponding
value of Yoo In order to determine the sum curve, it is necessary to
carry out this addition for values of x where either curve has a break-
point, and for one point on each end segment. To determine the correct
order of the breakpoints on the sum curve, trace out the multi-valued
curve starting at the left and simultaneously follow along the single-

y = (A+8)(x)

FIG. 21. ADDITION OF A MULTI-VALUED AND A SINGLE-VALUED PWL CURVE.
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valued curve at the same values of x. The single-valued curve will be
retraced opposite the part of the other curve that is multi-valued, so
that some breakpoints may be encountered more than once,

A breakpoint at which a multi-valued curve doubles back will be re-
ferred to as a corner point. After the breakpoints of a FWL operator in
slope-intercept form have been calculated, the corner points are easy to

identify. The breakpoint b , 1s a corner point if

k)
bk—l < bk‘ and bk > bk+l
or 1if

b >b, and b <DV

k-1 k k k+l

When the addition of a multi-valued and a single-valued PWL curve is
carried out in terms of PWL operators, the procedure is similar to that
of the single-valued case except when a corner point is encountered. The
addition process for single-valued operators starts with the first sec-
tion of each operator and works down the column* in both operators until
the last sections of both are reached. When adding a multi-valued opera-
tor A to a single-valued operator B the direction of travel in A is al-
ways down the column, dbut the direction of travel in B is reversed every
time a corner point of A is encountered. Moving upward in B corresponds
to moving to the left on the PWL curve. Moving to the left as the ad-
dition progresses will be referred to as the reverse mode since the
normal mode is moving to the right.

A more general procedure for addition of PWL operators in slope-
intercept form can now be stated. Starting with the first sections of
both operators,

1. Add two sections: (q,j’r,j) + (qk,rk) = (qJ +q Tyt rk)

2. Compare the breakpoints that follow those sections (when moving
downward, b follows the kth section, but when moving upward, b
follows the k" section).

3. Choose the smaller breakpoint when in the normal mode, or the
larger breakpoint when in the reverse mode (if breakpoints are equal,
choose both).

k-1

*Moving up and down the column in the PWL operator should not be confused
with moving up and down on its graph.,
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L,

5-

60

Move to the next section of the operator in which the breakpoint
was chosen.

If the chosen breakpoint is a corner point, reverse the direction
of travel in the other operator and change the mode of addition.
Go back to 1, and repeat the whole process until the last sections
of both operators are reached,

For the example of Fig. 21, this process gives

1-5: 05

-2.5, .25\ k, .25 1.5, 1

A+B= 0, -1 %2* N L,-.25
2.5, .25 7, of* %y -.75

| 6.5, ..5

6.5, 1

9.5, .25

The corner points of A have been starred., The detuils of tﬁe addition
are given in the following table, The direction of travel is indicated

by D

for down and U for up, and the mode of addition is indicated by N

for normal and R for reverse. The breakpoints that were chosen are
marked with arrows, The table can probably be best understood by fol-
lowing the PWL curves in Fig., 21 while it i1s being read.

Breakpoints to be
Sections to be Added | Direction of Travel | Mode Compared
A B A B A B
1 1l D D N 2 Q =
1 2 D D N 2 - N
2 2 D U R -2 0 =0
2 1 D U R -2 - .-
3 1 D D N - Q =—
3 2 D D N - Y —y—
3 3 D D N - -

If the multi-valued operator that is being added to the single-valued

operator is not defined for the entire range of the independent variable,

the same procedure can be applied., For Fig, 22a, we have
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I

1, 1/2

o, 1/2 1 * l, o -2 ‘ 2’ l
A+B-= 0, -1 0 + 2, 1/2 » = 2, _1/2
3, ©

l’ ‘l
When the multi-valued operator starts at the right, as in Fig. 22b, the
addition process is started in the reverse mode, first adding the last

section of B to the first section of A, and then moving upward in B un-
til a corner point of A is reached., For Fig. 22b, we obtain

3, -1

0, -1% , 1, 0 2,-1/2

A+B= (o, 1/2 O+ {2 12])2 7l 1
3, of 2 3, 1/2

Addition of two multi-valued curves is illustrated in Fig. 23.
Selection of sections to be added is carried out by starting at the left
and simultaneously tracing the two curves at the same values of 1,
Whenever curve A doubles back, curve B is retraced, and whenever curve
B doubles back, curve A is retraced. If curves A and B represent the
characteristics of PWL elements, the sum curve can be used to predict
the behavior of the two elements connected in series, For example, if

the initial state of the series network corresponds to point a on the

)| e
vd

N(A) |y

(a) (v)

FIG. 22. ADDITION OF A CURVE DEFINED FOR A SEMI-INFINITE
RANGE OF X TO A SINGLE-VALUED CURVE.
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v=o(a+8) (1)
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— |
o] 2 s ¢ 10 12 1% I8
FIG. 23. ADDITION OF MULTI-VALUED PWL CURVES.
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sum curve, and we drive the network with a current source, the path
a-b-b'-d-d'-j will be followed* as the current is continuously increased.
Similarly, if we drive with a voltage source, the path a-b-c-d-e-e'-h-i-j
will be followed as the voltage is continuously increased,

Addition of two multi-valued operators i1s similar to addition of a
multi-valued and a single-valued operator except that both A and B can
have corner points, so that it may be necessary to change the direction
of travel in both A and B, The rules for changing directions and modes
of addition are:

l. When a corner point of A is encountered, change directions in B and
change modes.

2. When a corner point of B is encountered, change directions in A and
change modes.

3. When corner points of both A and B are encountered simultaneously,
change modes, but do not change directions.
For Fig. 23,
1, 1/2
5 0
3, 1/2
0, 1/4\ . * 1, 1%\ g* | 12,-1/%
A+B= | 9,-1/2 | , +| 5,-1/b | =] 14,-3/b
9, 14/ © 3, 14/ & | 10,-21/m
10, 1/2
i, o
|12, 1/2 }

The details of this addition are given in the following table, This ex-
ample is rather complicated because every breakpoint is a corner point
and a mode change is needed at every step.

The exact nature of the dashed transitions depends on the parasitic
elements that are present in the network. It will be assumed that a
PWL neiwork will remain in its present state, i.e., continue to operate
on the same line segment of its characteristic, unless the terminal
conditions cannot be satisfied on this line segment. In this case, the
netvwork state will change to the nearest line segment on which the new
terminal conditions can be satisfied.
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Breakpoints to be
Sections to be Added Direction of Travel Campared

A B A B A B
‘ 12 8 e

)
&

1 1 D D N

1 2 9] D R - 4o
1 3 D D N 12« --

2 3 D u R o] 4 o—
2 2 4] U N 12 8 e—
2 1 D U R Qe --

3 1 D D N -- 8o
3 2 U D R 0 he—
3 3 D D N -- --

Fig. 24 shows another example of addition of two multi-valued curves.

In terms of PWL operators,

-5, 1/2

"2) l/h 0* '3: l/h h* '5:‘1/!“

A+B = |-2,-1/2) , + 0,-1/2) , =1 1,1/2
N, 1k 2, o b, -1/b

6, 1/b

In this case, the sum curve has only five sections, compared with nine
in the previous example. If, instead of starting the addition process
at the lower left on both curves, we start with the bottom section of
A and the top section of B, we obtain the closed-loop characteristic
shown with dashed lines., The s0lid curve correctly represents the v-i
characteristic of the series connection of the PWL elements represented
by A and B. The states of the network represented by the dashed curve
may be thought of as transient states., If we start with the network
operating at a point on the dashed curve and apply a voltage or current
outside the range of the dashed curve, the operating point must shift
to the solid curve., Once we are operating on the solid curve, the opera-
ting point will remain there no matter how we vary the terminal voltage
or current, The only way to get back t0 an operating point on the
dashed curve would be to go into the network and change the voltage
across one of the series elements directly.

The addition procedure for multi-valued operators works satisfactori-
ly if one of the PWL curves is undefined for a semi-infinite range of
the independent variable; however, difficulties arise if both curves are
of this type. If both multi-valued curves are defined for a semi-infinite
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FIG. 24. ADDITION OF MULTI-VALUED PWL CURVES.
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range of the independent variable, and the ranges of definition are not
the same, we will say that the corresponding PWL operators are incompati-
ble for addition. If we add the curves graphically, the sum curve may
have two separate branches (Fig. 10) or may form a closed loop (Fig. 8).
Even in the case where the range of definition is the same, the sum curve
may have two possible values (Fig. 25). The solid curve in Fig. 25b is
obtained by adding A and B in the usual manner,

0, 1/2 0, 1/4 0, 3/4
A+B = \o,-3/k * 0,-1/4+ = \o, -1

By listing the sections of B in the reverse order, we obtain the dashed

0, 1/2 0,-1/h 0, 1/L
A+ B = \o,-3/4 + 0, Y4+ = \o,-1/2

Because of this possible ambiguity, we must be careful when carrying out
addition of two PWL operators that are both undefined for some range of
the independent variable, If this type of addition is required during
the solution of an actual network problem, it is probably because we are
vworking with an over-idealized model, We then have several alternate
courses of action: (1) start over again using a less idealized model;
(2) if the addition occurs as one of the last steps in the problem, carry
it out graphically and try to interpret the result in terms of the model;
or (3) carry out the addition in temms of PWL operators with the risk
that the final solution may be incomplete or in error. 1In this case, the
solution should be checked by substitution back in the original network
equations, When we write an equation in terms of PWL operators, we will
do so with the implicit understanding that the equation is valid only if
all of the indicated algebraic operations can be carried out unambiguously.

Methods have been presented for addition of multi-valued PWL opera-
tors in slope-intercept form. Analagous methods have been developed for
the breakpoint form.

J. MULTIPLICATION OF MULTI-VALUED PWL OPERATORS

The multiplication process can be generalized to handle multi-valued
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(a) (b)
FIG. 25. ADDITION OF PWL CURVES UNDEFINED FOR x > 0.

PWL operators in the same manner that the addition process was general-
ized. The rules for selection of sections to be multiplied are com-
pletely analogous to the rules for selection of sections to be added,
except that one works with the breakpoints of A and B'l instead of with
the breakpoints of A and B.

The transfer characteristic of the cascade lattice network of Fig.
26a will be derived to illustrate multiplication of a single-valued PWL
operator by a PWL operator whose inverse is multi-valued., We will
assume that r2>> rl and that loading of the first lattice by the second
can be neglected, By considering the two possible states of each diode,
the transfer characteristics of the two cascaded networks are easily

seen to be
0,-1/2 -E,-1/2
Y= \o, 172 | (v3) and v3=v, -E= | o 1/2 (vy)
-E/2, -1/4
v = (o,-1/2>0 B (-E,-1/2> - | E2 Y/ (v,)
0, 1/2 -E, 1/2 E/2, -1/b
E/2, 1/h

This multiplication is carried out graphically in Fig. 26b.
The following example illustrates multiplication of a multi-valued

PWL operator by one whose inverse is multi-valued,



2, 2

2, 1 o* o 0,.2 -2, -2
-2, -1 )7, b2 ) = h, 1
l“,1/2 .,+ 0 -2, l 6, -l
3,1/2
Following the rules for selection of sections, the sections have been
st st _nd t _rd st,
multiplied in the following order: 1 x1 , 2 x1 , 3 "x1

d .
3r x 2nd, and 3rd x 3

FIG. 26a. CASCADE LATTICE NETWORK.

vy v

FIG. 26b. DETERMINATION OF TRANSFER CHARACTERISTIC BY
GRAPHICAL MULTIPLICATION.
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The product AB may be indeterminate if a section of A that has an
infinite slope must be multiplied by a section of B that has a zero
slope. Thus, the following product is indeterminate

-1/2,1/2 2, 1
<, ® 1, O
3/2,1/2 0, 1

This product is still indeterminate if graphical multiplication is used
(Fig. 27). Since,any point on the vertical section of A might be asso-
clated with any point on the vertical slope of B'l, the product curve
might take any path through the shaded indeterminate region. This diffi-
culty can be resolved by assuming finite, non-zero slopes for A and B,
and taking limits after the multiplication has been carried out.
Multiplication of PWL operators in breakpoint form has also been ex-
tended to the multi-valued case., The procedures for addition and multi-
plication of multi-valued PWL operators in breakpoint form have been
adapted for computer use and are discussed in more detail in Section

IX. C. 3.

FIG. 27. INDETERMINATE CASE FOR PWL OPERATOR MULTIPLICATION.
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K. SOLUTION OF PWL OPERATOR EQUATIONS

The algebra of PWL operators is similar to ordinary matrix algebra
in that addition is associative and commutative, and multiplication is
associative but not commutative. However, there is one important dif-
ference-~the distributive law holds from both sides for matrices, but it
holds only from the right for PWL operators. Some of the same techniques
that are used for solving matrix equations can be used for solving PWL-
operator equations, but the fact that the distributive law does not hold
from the left makes it difficult or impossible to solve certain PWL-
operator equations.

The inverse of the product of two PWL operators is the product of
the inverses taken in reverse order just as is true for matrices, If
we replace A by AB in Eq. (44), we obtain

(AB) (AB)™L = I

Premultiplying both sides by AL and then by B™Y yields
(aB)™* = B71a71 (61)

As an example of the solution of a PWL operator equation, consider
the following equation which is to be solved for X:

A(X +B) =X +C (62)
Subtracting (X + B) from both sides yields
AX+B) -(X+B)=C-B
We nov apply the right distributive law to factor out (X + B),
(A-I)(X+B)=C-B

Premultiplying both sides by (A - I)'l and subtracting B yields

X = (A - 1)'l (c -B) -B
-61 -



Further examples of techniques for the solution of PWL-operator equations
are given in Chapters IV and V.
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IV. SOLUTION OF A(X + I) = BX + C

As vill be seen in the next chapter, equations that can be reduced
to the form
A(X + I) = BX + C (63)

occur frequently in the solution of resistive networks that contain
three or more PWL resistors. Because of the importance of this equation,
considerable time and effort was devoted to its solution. If the left
distributive law were valid for PWL operators, it would be easy to s%lve
Eq. (63) in terms of the basic operations that were defined in Chapter
III. From the similarity of this equation and Eq. (62), it appears that
solution might be possible by same clever change of variables or rear-
rangement of terms. Unfortunately, all attempts to solve Eq. (63) in
terms of the basic operations have failled; therefore, it was necessary
to devise special methods for its solution. This equation has been
solved by graphical methods, by an iterative procedure, and by splitting
one of the PWL operators into sections.

A. EQUIVALENT FORMS OF THE BASIC EQUATION

Eq. (63) can be written in a number of equivalent forms. Post-

multiplying both sides of Eq. (63) by X-l, ve obtain

AT +xY) =Ba+cox? (64)

If we could solve this equation for X'l, we could solve the original
equation for X. Substituting Y =~(X + I) into Eq. (63), we obtain

A(-Y) = B(-Y-I) +C
Using Eq. (50), this becomes
B(Y + 1) = A(Y) - C (65)

which is of the same form as the original equation. Various changes of
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variable can be made in an attempt to find an equivalent equation that
is easier to solve. Unfortunately, such attempts often result in an
equation which reduces to the original form. For example, if we substi-
tute B'lYC for X and then postmultiply both sides of the equation by C-l,
we obtain

A(B'lY + c'l) =Y +1I
or At (Y +1I)= B7ly + ¢t (66)

If we let both sides of Eq. (63) operate on the variable i, and then
let X(i,) = 1,, ve obtain

A(i, + 1) = B(1,) +c(1,) (67)

Solving this equation for the relation between i, and il is equivalent
to solving the original equation for the unknown PWL operator X.

B. SOLUTIONS FOR FIRST-ORDER PWL OPERATORS

Eq. (63) is easy to solve when any one of the three PWL operators,
A, B, or C, is of first order because it is then possible to use the
left distributive law,

If A= (al, a2),

AX+I)=AX+a =BX+C

2
and
X=(A-8)"1(c- a,) (68)
If B = (bl, be),
AX+I)=BX+I)+C- b,
and
x=(a-8)"1(- by) - I (69)
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If C = (cl, c2), from Eq. (64) we obtain

-1

AX™" +I) =C(X" +1I)+B-c,
Xto@a-ot (- -1
and
Xa[(h-0)"(B-cy -1]™ (70)

If all three operators are first order, Eq. (63) becomes

(a1, 85) (X +I) = (by, by) X + (cg, cp)

from which

X =

cl + bl - al c2 - 32 (71)
2
ay - by 8, -5

C. GRAPHICAL SOLUTIONS

Equation (67) can be solved graphically to obtain the relation be-
tveen 1, and i,. For a fixed value of i,, e can rewrite Eq. (67) in
the form

AL, +1,) = 13[(1l +1,) - 1l] + C(il) = B'(il +1,)

vhere B' depends on il. The B' curve is obtained by shifting B an
amount 1, to the right and an amount C(il) upward., The intersection of
A(il + 12) and B'(il + 12) determines the value of i, + i, that corre-

sponds to the glven value of i, as shown in Fig. 8, If 1, 1is allowed
to vary continuously, this corresponds to shifting the origin of B
along the C curve, This shift can best be accomplished by plotting B
on a transparent overlay, which is placed over a plot of A and C. The
value of 1l is equal to the amow.t that the origin of the B curve has
been shifted to the right, and the corresponding value of i2 is equal
to the horizontal distance between the shifted origin and the inter-
section of A and B'. In order to determine completely the X curve that
relates 12 to 11, it is necessary only to read off the values of 12 and

il at the breakpoints and at one point on each end segment. X has a
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FIG. 3. DETERMINATION OF A POINT OGN THE GRAPRICAL SOLUTION.

breakpoint vhenever the origin of the shifted B curve lies over a break-
point of C or whenever a breakpoint of A or B' lies at the intersection
of A and B'. Fig. 29 illustrates this process for the equation

-3, 1/2
) 0, -3 a4, 3
3,2 (12 + 11) - 2, 1 (12) + 2, 0 (11)
6, % 3 b, o
or equivalently,
v, 32 3, 2 /b, 3/
1, 13 (X+I) = 2,1 X + 2, -1 (72)
0, O

To get a "feel" for the process, it is suggested that the reader plot B

on a transpareat overlay, slide it along C, and note where it intersects
A. The positions of P that determine the breakpoints of X are indicated
vith dashed lines, and the corresponding origins of the B curve are
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/N SOLUTION BY APPROXIMATE
DISTRIBUTIVE LAW

()

/72, 1/2
" ]

3 12

. GRAPNICAL SOLUTION OF EQ. (72).
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indicated with heavy crosses. To form X in breakpoint form, the values

of 1l and 12 that are read off the graph at the breakpoints are listed

in order, and then X can be converted to slope-intercept form if desired.
To verify that the solution is correct, we substitute X back into Eq. (72):

1/2, 3/2 1/2, 1/2
1/2, 1/2 o, 2 3, 2 of 1, 1 11/, -1/4
1,13/ 3 3\ o 3/° (-1, 1)2 2\ o, 2/* 2, -1
6\ 3, 32 *\ 3, 12 % ©
i 4 ‘
3/1: 3/1 -1 1/4,-1/4 \
= + 2, -1
2, 1/2 2,1/2/ 2 % 0/2
3/, 3/b
= 1, 1
2, 1/2

Fig. 30 illustrates the graphical solution of

(:i: l/i) (1, +1,) = (+;.: ::) (1,) *(1;:: 1/:) (1,) (73)

In this example, the breakpoint of B intersects A twice as B is slid
along C.

For a given value of i,, the shifted B curve may not intersect the

l,
A curve at all or it may intersect it several times. Thus, for certain

values of i,, the solution curve may be undefined or it may be multi-

l’
valued. For the network of Fig. lla,

OO N - B 5 P P G T
(Th)
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FIG. 30. GRAPHICAL SOLUTION OF EQ. ().
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If ve let v, = 4 X (il), Eq. (74) can be reduced to

-1, 0 0, 1
1, 1) (x+I) = 2xe (o,o) (75)
6,-1

Although this equation could be solved by Eq. (69), we will use the
graphical procedure instead (Fig. 31a). As the origin of the B curve
slides along C, B first moves up through positions Bl and 32 until B

3

is reached, and then moves down again through positions Bh and 35. Until

32 is reached, there is only one intersection with A, but between 32 and
33, there are three intersections, and beyond Bh there is only one inter-
section again., Thus, x(il) is triple-valued for -2 < i, <2 and single-
valued elsewhere. The solution has two distinct branches (the solid
curves in Fig. 31b% If we multiply this solution by -1/2, wve obtain the
1 shown in Fig. llec.

If better accuracy is needed than can be obtained with the graphical
procedure, Eq. (71) can be used to calculate the numerical values for
each section of X after the appropriate sections of A, B, and C have
been selected graphically. For example, to calculate the first section

of X in Fig. 30, we take

curve of V1 vs., 1

(al’ 32) = (-2, 1/2) (b]_) b2) = (1, -1) (cl’ °2) = (-1, 1)

and apply Eq. (71) to obtain X, = (4/3, 1/3), which checks the graphical
solution,

Since the basic operation involved in the graphical procedure is the
determination of points of intersection of straight lines, in principle
it should be possible to describe the procedure in such a manner that it
can be carried out numerically. In the case where A, B, C, and X are
all monotonic (as in Fig. 29), the numerical procedure is relatively
straightforward. After Eq. (71) has been used to calculate a section of
X from appropriate sections of A, B, and C, a simple comparison scheme
is used to determine whether a breakpoint of A, B, or C will be en-

countered next, When some of the curves are multi-valued, the decision
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FIG. 31. GRAPHICAL SOLUTION OF EQ. (75)
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rule for determining the successive sections of A, B, and C that are to
be used is so complicated that it is not practical to formulate it in
detail, For this reason, the graphical procedure would be difficult to
adapt for use with a digital computer.

D. APPROXIMATE SOLUTION

The basic reason that Eq. (63) is difficult to solve is that the left
distributive law is invalid. If we had an approximation to the left dis-
tributive law, we could obtain an approximate solution of the equation.

We would like to obtain an approximate distributive law of the form
AX +Y) =~ A'(X) + A'(Y) (76)
When X = Y, Eq. (76) becomes
A(2X) = 2A'(X)
If we choose A' so that Eq. (76) is exact when X = Y, we obtain
A' = (3A-2) = (0,4)A(0,2) (76a)
Using Eq. (76) to find an approximate solution to Eq. (63), we obtain

A(X+I) = BK+C =~ A'(X) + A’ (17)

and

X ~ (A" -B)Y (¢ - A1)

This solution is exact if A is linear. For Eq. (72),

-3, 1]
1, o0
(1/2,1/2) (1/&,1/2) i/2, 3/2
At o= 1,1/3) 2= \y2,13) ¥=|19/18, 2 (18)
3/2, 3
2, 4|
-T2 - L 14, 5




2

[ B 4

And for Eq. (T3),

k/3, 1/3
/6, 1/6
2} 2, 3\ W3, o (19)
A' = é. ('3; l) 2 - ('3/2’ l) = 1];6,-1/6
-8/3,-1/3

In these two examples, the results obtained by the approximate distribu.
tive law are very close to the correct solution as shown by the dashed
lines in Figs. 29b and 30b.

The approximate left distributive law can be applied to the approxi-
mate solution of more complicated FPWL operator equations. The results
will not always be as good as in the above examples, but solution curves
of the correct shape vwill ger .rally be obtained.

E. ITERATIVE SOLUTION

After an approximate solution to Bq. (63) has been obtained by using
the approximate distributive law, this approximation can be improved by
using an iterative procedure, If we solve the left side of Eq. (63) for
X, wve obtain

X=blAX+1) -] (80)

vhich suggests using the iteration

X, = BA(X + 1) - c] (81)

where X_1s the x*® approximation to X.

A sufficient condition for convergence of this iteration will now be
derived, Subtracting Eq. (80) from Eq. (81) yields

=1 -1
X, -X=B [A(xk+1) -C] - B [A(X + 1) -¢]
If A and B are first order, the distributive law of Eq. (57) can be ap-

plied, and
1

xk+l-x-nflek-B'Ax

« 73 -
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If A= (al,az) and B = (bl,bz)
B™A ( oL 1 (= a) <al'bl %)
= -5 ] = ’
%) k) s\
and

(Koy - X) = (08/5,) (X, - X) (82)
Starting with an initial approximation xo applying Eq. (82) n times
yields

(xn-x>=(o,:—§)n <xc,-x>=(2%)n ( -x) (83

In words, the error in the nth approximation is (a‘,a/ba)n times the error

in the initial approximation. If |a o/ | <1, (85/0, 2> 0 as n > w,
and (x X)+o0. If X and X are defined for the same renge of inde-
pendent variable, then x < X. Thus for any reasonable initial approxi-
mation to X, the iteration vill converge if |a | < lb |. The ratio
a2/b2| glves some measure of how rapidly the iteration will coaverge.
In general, the smaller the ratio ]ae/bel and the closer the initial ap-
proximation, the more rapid will be the convergence,
We will now consider convergence when A and B are of higher order.

If every section of X converges to the correct value, then X must con-
verge to the correct value, If we knew which sections of A and B corre-
sponded to each section of X, we could apply the above procedure to test
the convergence of each section. However, we usually do not know which
sections of A and B correspond to a given section of X, so we will con-
sider the possibility that any section of A might be paired with any
section of B during the calculation. Since convergence of a given sec-
tion of X depends on the ratio of the slope of a section of A to the
slope of a section of B, the worst possible situation occurs when the
slope of A is maximum and the slope of B is minimum. Let erlmx be the
maximum absolute value of all the slopes of A and let IrBlmin be the

* It would not be reasonable, for example, to approximate a single-valued

PWL operator, vhich is defined for all values of i_, by a multi-valued
operator defined only for i, > O. In this case, tﬁe iteration would
still converge, but not necéssarily to the correct value,
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minimum sbsolute value of all the slopes of B. Then if erJmax < er'min’
convergence of all sections of X is assured, provided that the initial
approximation is sufficiently close. The iteration may converge in some
” >
cases even if IrAlmax > |rBImin since the worst combination of slopes
will not necessarily be encountered during the solution of a problem.
In some cases where the iteration of Eq. (81) fails to converge, the

following iteration may be used instead:

X, =A™ (BK +C) -1 (84)

This iteration converges if |rBlmai<|rA|min' If the iterations of

Eqs. (81) and (84) both fail to converge, a similcr iteration may con-
verge for one of the equivalent forms of Eq. (63). For example, if we
solve Eq. (6k4) for X% by an iteration similar to Eq. (81), the roles of
B and C are interchanged so the new condition for convergence is

IrA'mai<|rC|min‘

Although these iterative methods are cumbersome to carry out by hand,
they are well suited for use with a digital computer. A number of ex-
amples of Eq. (63) have been worked on the Burroughs 220 using the itera-
tion of Eq. (81). The details of the computer programs are discussed in
Chapter IX. Several different initial approximations were tried for each
equation. The initial approximation obtained by the approximate distri-
butive law, Eq. (77), generally converges most rapidly, but in meny exam-
ples, a much cruder approximation such as xo = 0 converges almost as fast.
Since the initial and final segments of X are not difficult to calculate,
another useful initial approximation is a second-order PWL operator that
agrees with the initial and final segments of X.

(C D aen - (21 e

has erlmax/erlmin = 1/2; therefore, rapid convergence of the iterative

The equation

solution may be expected, Starting with the initial approximation,
Xo = 0, successive approximations Xl, X2, and x3 are plotted in Fig. 32.
Note that the maximum error is cut in half with each iteration. The

final solution,
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[-6.7,-0.37] 30/101, 9/101
-10/3, © 10/7, 3/7
X= ‘ -1, 1 = 1, 0
0, 1 1, -0.3
10/3, © 3/11,-9/110
7,-0.3 |

is obtained correct to four decimal places in the breakpoints on the 13th
iteration. Similar accuracy is obtained in 10 iterations when the initial
approximation is calculated by the approximate distributive law.

For Eq. (72), IrA|m ax/lrnlmin = 1/2, Starting with the initial ap-
proximation of Eq. (78), the solution converges to four-place accuracy
in seven iterations, and starting with xo = 0, nine iterations are re-
quired. For Eq. (73), the iteration converges for all sections of X ex-
cept the last one, For this section, rA_/rB = -1, Starting with the ap-
proximation of Eq. (79), after 15 iterations the solution oscillates
between the values

— -k, 0 7] "4, O

-1, 1 -1, 1

2/3,4/3 and 2/3,4/3

3,4/3 3,4/3

5, 1 Lll, OJ
[ 1, 1]

A similar oscillation occurs after 21 iterations if xo = 0 is used. In
cases like this, convergence can be obtained by applying an averaging
procedure after each iteration.

F. THE SECTION METHOD

As shown in Section IV. B, Eq. (63) has a simple solution if A, B,
or C is of first order. When all the operators are of higher order, it
is possible to break one of the operators into sections, solve the
equation for each section, determine the region of validity for each par-
tial solution, and then patch the partial solutions together to form the
complete solution.
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If C is of second order and single-valued, we can shift the break.-
point of C to the origin by & change of variables and then vrite Eq. (67)
in the form 0, e
ALy +1,) = B(1,) + (o, 02) (1)) (86)

If 1, < 0, this becomes

1

A(1; +1,) = B(1,) + (0,c,) (4,)

and, by Eq. (70)

1p= [(A - )™ (B - cp) - 117 (1)) = Xy(1) (87)
Similarly, for i, >0,
1p = (& - c)™ (B - cy) - 117 (1)) = %, (4) (68)

If xl(o) and x.e(o) are single-valued

0, 1 X, (11) if 4, <0
X (o, o) (1,) = X, (0) 1. >0 (89)
0, 1 X, (0) if i <0
2 1=
%2 (0, 0) (1) = {X2 (1) if 1, >0 (90)
Since 12(0) = xl(o) = xe(o), we can express i, in the form
y . [x (o1 0, O _
L-xiy) - [n (22« % (23] w-xo o
For Eq. (85),
‘ 30/101,9/101 10/1, 0
X, = < 10/7, 3/7) X = ( 1,- 3/10)
1, 0 3/1,-9/110
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(o, 1) (o, 0)
X=X \o, 0/ * Xa\o, 1/ ~%(9

30/101, 9/101

30/101,9/101 | 1, %\, 10/7, 3/1

- /7, 371723 + | 1, -3/10 -(1,0) = 1, o0
L, o/t 3/11,-9/110 10/3 1, -3/10
3/1,-9/110

which checks the result obtained by the iterative method.

We will now extend the above procedure in order to solve Eq. (63)
vhen C is of nth order and single-valued. We can separate Eq. (67) into
a series of n equations, each valid over a specified range of 11:

AL + 12) = B (12)\ +Cp (11) b, <4, <, (k = 1,2, ...,n) (92)

th

vhere ck is the kth section of C and b, is the k breakpoint of C.

k
The solutions to these equations are

i, = xk (il)‘ = [(A - Ck)-l (B - Ck) - I]-l (11) (x = 1,2, ...,n) (93)

where ¢, is the slope of C We now define

k k’

bk-l’ 0
Qk = 0,1 (9’*)
as shown in Fig. 33. If xk is single-valued at bk-l and bk’
oy y) 4 S,
% q (1) = %) ystgy o (99)
X (%) L

Since 12(bk‘) = )&(bk) = xk+1(bk) ’ 12 can be expressed in the form

n n-1
LX) = ) KRG () - ) K (3 (96)

k=l k=l
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FIG. 33. PLOT OF Q,.

We will now show that this equation gives the correct value of 12 for
every range of 1

.
Ir bJ-l <i, < bJ, by using Eq. (95) we obtain

-l n n-1

1, t X (8) + X, (1) +) X (b, 1) -) K (b))  (96)

k=1 k=J+1 k=1

n n-l n-1
see ) K (o) =), By () =), K ()

k=J+l k=] k=]

Eq. (96a) reduces to i
specified range of 11.

For Eq. (72),

o = xJ (11) , which is the correct solution for the

X=X Q +X, q2 + x3 Q3 - X (bl) - x.2 (ba)
1/2, 1/2 0, 1 1, 1 -1, 0 7/3, 1/3 2,0
= 3/4,7/20 2,0/ * \o, 2 0, 1] + 3 Yloaf (0,0)-(4,0)
-9/8, 1/8 2, 0 3, 3/2
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0, 0\ , 1/2,1/2

(1/2,1/2) 3,11, (h, o) . 1, 1
=\ o o/t * oo , ! 3,172/ 2 = (WO) = o, 2
b, 0 3,1/2

which checks the graphical solution of Fig. 29.

The section method can be applied directly to any equation of the
form of Eq. (63) provided that C is single-valued and all the partial
solutions are single-valued at the breakpoints of C. If C is multi-
valued, it may be possible to apply the section method to one of the
equivalent forms of Eq. (63), e.g., if B is single-valued Eq. (64) could
be used. If some of the partial solutions are multi-valued at the break-
points, the section method can still be used, but the partial solutions
must be combined graphically because the indicated multiplications in
Eq. (96) cannot be carried out. As an example, we will solve Eq. (75)
by the section method. The partial solutions

b, -b/3
x,=| 2 o (11 <0)
2, =2
and
2, 0
=12 -2 (11 >0)
k,-2/3/

are plotted in Fig. 31 vith dashed lines. The complete solution is
formed by taking xl for :ll <0, and x2 for 11 > 0.

The section method has also been programmed for a digital computer
(see Section IX. C. 4). It is superior to the iterative method because
it is much faster and there are no problems with convergence.
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G. TRIVOLUTION

Although Eq. (63) generally cannot be solved in terms of the basic
operations, it can always be solved by the graphical method, and in most
cases the equation or one of its equivalent forms can also be solved by
the iterative method or by the section method. Since the operation of
solving this equation occurs frequently in the solution of networks
which contain three or more PWL resistors, it is convenient to have a
name and symbol for the operation. We will write X = A%B*C as a symbol
for the solution of A(X + I) = BX + C, and since there are three operands
involved, we will call the operation trivolution.

Trivolution has several useful algebraic properties. In terms of
trivolution, the solution to Eq. (64) 1s X™1 = A%C*B. Since X = A*B¥C,
vwe have the relationship

(avprc) ™t = avceB (97)
From Eq. (65),
Y=(X+I)=B*#A*.C

and substitution of A*B*C for X yields

AYB*C + I = -B % K * -C (98)
From Eq. (66),

Y = Bxc™t = ats e 7t
from which

B(A*B*C) = (A1 ™% ¢71)c (99)

If Y ={A*BxC),
A(-Y + I) = B(-Y) + C or Ky -1)=Br+cC
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Postmultiplying by (0,-1) yields
AY +1)=BY+ T

from which Y=KX*B*(C

or Y =-(A*B¥C) = A% E» T (100)

If A, B, or C is first order, trivolution can be expressed in terms of
the basic operations. For example, if A = (al,aa) , from Eq. (68)

AB*C = (A - B)‘l (c - 52) (101)
Trivolution would not be a very valuable operation if it could be
used to solve only one form of equation. Fortunately, in combination
with the basic operations, trivolution can be used to solve many other
types of equations. To solve
A(X - I) =BX +C (102)
postmultiply both sides by (0,-1) to obtain
AX+1I)=BX+C
from which
X=A*B*C (103)
To solve
A(DX + E) = BX + C (10%)
-1 -].D
postmultiply both sides by E = and replace B with BD "D, to obtain

A(‘Dm-:'l +1) = spt (sz'l) + CE™X
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from which

e 2 e (105)

X = D'l(A * BD™
To solve

A(X+D)=B(X+E)+C
we first rewrite the equation in the form

A[(X +E) +(D-E)] =B(X+E) +C (106)

Since Eq. (106) has the same form as Eq. (104), we can solve for X + E
by Eq. (105), which yields

x-[A*B*c(D-E)'l] (D -B) -E (107)

Other equations can be solved by using trivolution two or more times.
As an example, we will solve

B[A(X + I) - E + X] = C[A(X + I) - E] + DX
for X. Postmultiplying by x? yields
B[A(I + x™1) =&L41)- cla(z + x) -] + D
Applying trivolution once, we obtain
A(T + x'l) - Ex™ - meowp

Postmultiplying by X and adding E to both sides ylelds

A(X + I) = (B*C*D)X + E
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from which
X = A% (B#C*D) * B
Similarly, X = (A*B#*C) # D # E is the solution of
A[(D+I)X+E+I]=BDX+E)+CX+1I)

Unfortunately, there are many PWL operator equations which cannot be
solved by using trivolution in combination with the basic algebraic opera-
tions. Such equations can often be solved using a combination of trivo-
lution with an iterative procedure. As will be shown in Section V. G.,

sets of simultaneous equations which occur in the analysis of resistive
PWL networks can be solved by using trivolution and iteration.
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V. ANALYSIS OF RESISTIVE PWL NETWORKS

PWL operators have been defined to represent the characteristic
curves of PWL elements, algebraic operations have been defined for PWL
operators, the algebraic properties of these operations have been studied,
and the basic techniques for solving PWL-operator equations have been
discussed. We are now ready to apply these results to the analysis of
resistive PWL networks. Methods for obtaining the input and transfer
characteristics of series-parallel PWL networks and more general PWL net-

vorks containing one, two, or more PWL resistors will be studied.

A, SERIES-PARALLEL NETWORKS

The v-i characteristic of n PWL resistors in series is

n
Re) R (108)
k=1
where Rk is the v-1 characteristic of the xth resistor. By duality, the
i-v characteristic of n PWL resistors in parallel is
n
G =) 6 (209)
k=l
where Gk is the i-v characteristic of the kth resistor. Taking inverses,
the v-1 characteristic of n PWL resistors in parallel is given by

n -1
R .( ) & (110)
k=l
The input v-i characteristic of any series-parallel network that is com-
posed of PWL resistors can be found by using the above equations and in-
version. As an example, the series-parallel network of Fig. 5Sa will be
analyzed by PWL operators. The i-v characteristic to the right of a-a'

is given by

e (3)

-1 -1

-1, 1/2 . 2, 2
5) 2 '5/2’ 1/2



The v-1 characteristic to the right of b-b' is

-1
2, 2
2, 2 0, 0 o, 0 |t [-5/2,1/2
('5/2’1/2) 3¢ (1/2)1/2) 1 (-6.- 2)3 = 2, 1
8, 3
-1,1/2
- 5 2
2, 1
8/3,1/3
The input v-i characteristic is then
-1,1/2 -1,1/2
5, 2\ 0, 0 5, 2
2, 13 * -8/3,2/3)'* = 2, 1
8/3,1/3/ * 8/3,1/3
0, 1

vhich checks Eq. (5).
The PWL characteristic of the network of Fig. 6c can easily be de-
rived in terms of FWL operators. The i-v characteristic of Fig. 6a is

6, 3

=] -3 '(f,f,) . _ZZ) (v)) = | 0,73 ) (v)) = Alv})
-6, 3

The terminal current and voltage in Fig. 6c are related to il and vy by

12=11-vl=(A-I) (vl)

v2=1l+vl=(A+I) (vl)
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Solving the second equation for vy and substituting in the first yields

1,= (A-1) (A+ D)7 (vy)
-1
6, 2 6, L 6, 2 -3/2, 1/k4
= 0,-4 0,2 [(vy) = | 0,k |77 7 0,-1/2 |(v,)
6,2/ \-6, 4 6,2/ 1 L\ 3/2,

Carrying out the indicated multiplication, we obtain

3,1/2
i,=[ o, 2 (v2)
-3,1/2

which checks the result given in Fig. 6d.

Many of the simple rules for working with linear resistive series-
parallel networks have PWL analoge. For the voltage divider of Fig. 34,
the input voltage is

v

v, +V, =R (1) + R, (1) = (Rl + Ra) (1)
Solving for i yields

i=(R, + R2)°l (v)

1
The output voltage is
v, =R, (1) =R, (R, +R,)* (v) (111)
2 2 2 V1 2

If Rl and R2 are linear, this equation reduces to the familiar voltage-
divider ruile



*

T &

FIG. 34. PWL VOLT

For computational purposes, the tr

AGE DIVIDER.

ansfer characteristic for the

voltage divider of Fig. 34 can be rewritten as

-1 -
Rp(Ry + Ry) ™ = [(R) + Ry)R,

Given numerical values for Rl and R2,

evaluate. For

l]'l = (R,R 1, 1)'l

12 (112)

the latter expression is easy to

-1,1/2 0, 1
Ry=1|-1, 1 and R, = {-2, 2
1, O 2,1
we obtain
| -1,1/2
-1,1/2 0, 1 1 1
1l -1,
RR, "= (-1, 1 1,1/2 | = 1, 0
1, © -2, 1 -
and
-1,3/2 1 -1 2/3)2/3
-1 -
(R1R2 +1)= |-, 2| (RR, " +1I) =|1/2,1/2
1, 1 -1, 1
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B. INPUT AND TRANSFER CHARACTERISTICS OF PWL LADDER NETWORKS

The input and transfer characteristics of FWL ladder networks can be
found by applying standard ladder-network techniques. Consider the gen-
eral PWL resistive ladder network of Fig. 35 with the v-i1 characteristics
of the series branches represented by the PWL operators Rl’ RE’ veey Rn’
and the 1-v characteristics of the shunt branches represented by
Gl, Ge, ceey Gn‘ The analysis proceeds as follows:

[y
[}

1 =6 (v)

<
[

1= R (11) +v = (RlGl + I) (vo)

1

G, (vl) + il = [Ga(RlGl +I)+ Gl] (vo)
v, = R, (12) +v, = {RZ[GQ(R]_Gl +I)+ GI] +R,G, + I} (vo)
and so on.

At the (n-l)th step, we have expressed 1 , and v in terms of v, If

i = A(vo) and v . = B(vo), then the n®h step is

n-1 -1

1 =6y (vn_l) +1 .= (GnB + A) (vo) (113)

v =R (1n) +v o= [Rn(an‘+ A) + B] (vo) (114)

vwhich expresses the transfer characteristic of the ladder. Eliminating

Yno Ra Voo e Ry v2  R2 vy Ry v
Tn . i
n-{
en

FIG. 35. GENERAL PWL LADDER NETWORK
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v, from Eqs.(113) and (114) gives the input v-i characteristic as

v, = [R (B +A)+B] (g3 + At (1)

-1
= [Rn +B (G3B + A)'l] (1n) = [Rn + (G, + AB'l) ) (1n)
(115)
The above analysis shows that the input and transfer characteristics
of any resistive PWL ladder network can be calculated in terms of PWL

operators.

C. THE BRIDGE NETWORK

Non-series-parallel PWL networks are generally more difficult to
analyze than series-parallel networks. The bridge (Fig. 36), which is
the simplest non-series-parallel network, will be analyzed for various
combinations of linear and PWL resistors. When the bridge is balanced,

15 = 0, and v, = v,. Using the voltage divider formula, K. (112),
-1l -1
v, = (RlR2 +I) 7 (v)
and
-1 -1
v, = (R3Rh +I) 7 (v)
Equating v and V5 gives the equation of balance as
-1 -1 -1 -1
(RiR, ~ + 1) (v) = (R3Rn+ +I) 7 (v)
or
-1 -1
R].Ra = R3R,+

The unbalanced bridge is easy to solve in certain cases, If R5 and
twvo adjacent arms are linear, a delta-wye or wye-delta transformation
can be performed on the linear part of the network to reduce the bridge
to a series-parallel network. If R5 and an adjacent arm are PWL, such a
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FIG. 36. A PWL BRIDGE NETWORK.

transformation is impossible and it is necessary to write loop or node

equations in order to analyze the network. The v-i characteristic of a

diode bridge network (Fig. 37) will be derived as an example.

1]

FIG. 37. A DIODE BRIDGE NETWORK.
%%
The equations for the indicated loops are

(Ry +3) (1;) +31, -1 =0 (116)

31, + (32 + L) (12) -2i=0 (117)
where 0, 6 1, o
By = \o, » and Ra= 11, 0
+

* -
Stern [Ref. 5, pp. 20-23] analyzes this same network using g trans-

formations.
**#The loops have been chosen so that each PWL resistor is traversed by a

single loop current,
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The input voltage is given by
va2-4) -2, = R(1) (118)

If we substitute X(1i) for i, and Y(1) for 1, in Egs. (116),. (117), and (118),
and then cancel i, we obtain three simultaneous PWL operator equations:

(Rl +3)X+3¥-1I=0 (119)
3X + (R2 +4)Y -2I =0 (120)
R=2I -X -2Y (121)

To solve these equations for R, we first use Eq. (121) to eliminate Y
from Eq. (119) and X from Eq. (120), obtaining

(Ry +3/2)X +21 - (3/2)R=0 or (R; +3)X =3R -4
(R, - 2 )Y+LU4I - 3R =0 or (Ry -2)Y =3R -4

2

Next, we solve these equations for X and Y respectively and substitute
into Eq. (121) to obtain

(R-2)+ (2R +3) (3R -4) +2(Ry -2)" (R - ) =0 (122)
Observing that
(R -2) =1/3 (3R -4) -2/3
and applying the right distributive law, Eq. (122) can be rewritten as
[1/3 + (28, + )™ 42 (R, - 2)] (3R - 4) = 2/3

Solving this equation for R, we obtain
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-1
R=1/3 {[1/3+ (28, + 3)7t + 2(R; - 2)7l1 L 2/34+4) (123)

This equation can be evaluated for the given values of Ry and R2 as
follows:

-1 ~N
T 0, 15\ * 1, o\t
R = 1/3 1/3 + 0, .,) +2 1, -2 . 2/3+ 4 >
) -1 <
[ 0,1/15 0, O
= 1/3 1/3*‘0, oo+ 1, - 1 .2/3+uj
-1
0, 2/5 0, 5/2
0, 1/3 ' o, 3
= 1/3 1,-2/3 .2/3+4 |=1/3 3/2,-3/2 | 2/3 + 4
1,-3/5 \5/3,-5/3
0, 17/3 0, 17/9
0, 6 o, 2
=1/3 32, 3 |° 1/2, 1
5/3, 26/9 5/9,26/27

The resulting PWL operator represents the input v-1 characteristic of
the diode bridge network.

Figure 38a shows a bridge network with three FWL elements. To
facilitate analysis of this network, the voltage source is replaced with
two parallel sources (Fig. 38b), and then these sources are transformed
to current sources (Fig. 38c). In the final network, R, is the parallel
combination of ry and Ra, and RL is the parallel comdbination of r3 and
Rh' The voltage around the loop 1is

Ry (15) + B [(v/ry) + 1,] = B [(v/r)) - 451 = 0

When this equation i1s solved to obtain the relation between 15 and v,

the other voltages and currents in the network can be expressed as
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functions of v. Substituting Y(15) for v, we obtain the PWL operator
equation

Vol 1
Ru(%aux).né (qx-x)-a5

The change of variable, Y = (rl + r3)x + rl, reduces this to the form

[ rl ' r3
R, (1+;—) (X +1I) =R, (l+r—)X-R5
3 1
which can be solved for X by trivolution. An example of the solution of
a bridge network with four PWL elements is given in Section V. H.

D. RESISTIVE PWL NETWORK WITH ONE PWL RESISTOR

In the preceding sections, we have seen that it is always possible
to analyze series-parallel FWL networks in terms of PWL operators and
that solutions can also be obtained for simple non-series-parallel net-
works, We will now try to determine what class of resistive PWL networks
can be analyzed by PWL operators and formulate a general method of
analysis, We will start by deriving the input v-i1 characteristic for a
linear resistive network that contains one PWL resistor imbedded in it.
To facilitate the analysis, the linear part of the network is separated
from the PWL part, and the network 1s redrawn as a linear two-port ter-
minated in a PWL resistor (Fig. 39).

(») (e)

FIG. 38. A BRIDGE VWITH THEREE PWL RESISTORS.
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+ | LINEAR | + 2°
Vi [ResISTIVE] Y2$ R

FIG. 39. GENERAL RESISTIVE NETWORK WITH
ONE PYL RESISTOR.

This procedure permits part of the work to be done on the linear portion
before the nonlinear portion is considered. The two-port may contain de-
pendent sources and non-reciprocal elements Just as long as it is linear.
The two-port can be described by its z-parameters, and the terminal be-
havior can be expressed by the equations*

(124)

MR LR R Po

Vo = 2yi) - 2yl = R(1,) (125)

Solving the second equation for 12 and substituting in the first equa-
tion, we obtain

i, = (R, + 222)'1 zal(il) (126)

-1
vy = 201y - 2,(Ry +250)7 2y (1)

- [zll -2, (Ry +2 )'l

2 * 2307 2] (1)) (127)

As a partial check on this result, note that when R2 is linear the above
equation reduces to the correct form
2.2
T
2 22

* The minus signs result from the choice of reference directions for the
currents,
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As an example, we will apply Eq. (127) to determine the input char-
acteristic for the network of Fig. 40. For this network,

2, 1
Z4y = 3 20 = 25 = 1, Zyp = 2, R = 1, 1/2

0, 3 1 0, 1/3
(R +25) = |1, 52 (R+200) " = | o5, 2/5
4 0, 1/3 o, 8/3
213 - 21 Ry +235) " 25 = 3 -l 55 or5 ) = loys,13/5

This same result could also be obtained by a series-parallel analysis.
The transfer characteristic that relates any two voltages in a

linear resistive network with one PWL resistor can also be found., If we

add a third port to the linear network of Fig. 39 and set 13 = 0, the

terminal behavior of the network is now described by Eq. (124), Eq. (125),

and

v, =2 .1 -z _1 (128)

From Eq. (127),
1= 2y, -2y, (Ry +2,) 20170 (v)) (229)
1 11 12 2 22 21 1
Substituting Eqs. (126) and (129) into Eq. (128), we obtain the desired
transfer characteristic as
221}'}(vl)
(130)

. 4
vy m Loy -2 (Ry +25) 7 29] [2)) - 25, (R + 2)

' . (?:l;z>

© : -0~

FIG. 40. EXAMPLE OF A NETWORK WITH ONE PWL RESISTOR.
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E. PWL NETWORK WITH TWO PWL RESISTORS

A linear resistive network with two PWL resistors imbedded in it can

be analyzed in a manner similar to that with only one PWL resistor.,

The

network is first redrawn as a linear three-port terminated in two PWL

resistors (Fig. 41) and the terminal relations for the network are ex-

pressed in terms of the z-parameters by the equations:

vy =2y il - %15 12 - z1313
Vo =25 1y =2y, 1, - 253 13 =R, (1
vy =2y i, - 230 i, - 233 13 = R3 (1

Combining the last two equations glves

zoy 23y 1) = 23y (Ry +255) (1) + 25 2,5 44

=z, (R3 + 233) (13) + 2, z32 12

Solving this equation for i, ylelds

3

i

= A (12)

Substituting A (12) for 1

and solving, we obtain

3

y-1

[y
[

+ 2 A

= (R2 + 2 23

22 259 (1)

-1

) -1
i, = (R3 * 233+ 2y A™T)

from which
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3= [z21 (R3 + 233) - 231z23] [z31(R2 + 222) - 2y, 232] (12)

25 (1)

(131)

(132)

(133)

in Eq. (132) and A™Y (1) for 1, in Eq. (133)



P 4

+ A)-l z

vy = lzgy - 2pp By + 255 + 2,5 21

-1
- 213 (Ry + 235 + 24, M) 23] (1) (134)

where

-1
A= [221 (R3 + 233) - 23 z23] [z31(R2 + 2.22) - 25 z32]

Ot
+ LINEAR
i RESISTIVE

o———1 NETWORK

FIG. 41. GENERAL RESISTIVE NETWORK WITH
TWO PW. RESISTORS.

Evaluation of this expression for given values of the constants may be
vairly laborious. In the special case where 2.12231/ Zpy = 213221/ 2309

vhich includes all reciprocal networks, a simpler equation for the FWL
input impedance can be derived. Following a procedure similar to that
used to solve the diode bridge network (Fig. 37), vwe can show that

-1 -1

Zon 2 z Z,. 2 z
12 23 23 13 "32 32
R=]2z2..IR, + 2 - + 2 R. + 2 - —22 ———
21(2 22 213 ) zl3 13 ( 3 33 2,5 ) 25

- %13 %21 %13 21
+ I -—2 + zll - ———2 (135)
23 23

Evaluation of this expression requires only one addition of two higher-
order FWL operators compared with three additions and one multiplication
for Eq. (134). Voltage-transfer characteristics for the resistive net-
work with two PWL resistors can also be found by an extension of the
procedure used in Section V. D.
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F. PWL NETWORK WITH THREE PWL RESISTORS

In Sects. V. D. and V. E., general methods of analyzing resistive
PWL networks that contain one or two PWL resistors have been derived, If
possible, we would like to generalize this procedure to three or more
PWL resistors. Unfortunately, attempts to do this lead to PWL operator
equations that cannot be solved in terms of the basic operations of ad-
dition, subtraction, multiplication, and inversion, so trivolution and
iterative procedures must be used.

For purposes of determining the PWL input characteristic, a linear
resistive network that contains n PWL resistors imbedded in it can be re-
drawn as a linear (n+l)-port terminated in n PWL resistors (Fig. u42).

LINEAR
RESISTIVE
NETWORK

F

I"I(%i “12;' P@%M-SHVE NETWORK

As long as it is linear, the (n+l)-port may contain dependent sources or
other non-reciprocal elements. When d-c sources are present in the (n+l)-
port, equivalent sources may be brought out at the terminals and com-
bined with the PWL elements.

Instead of describing the terminal characteristics of the (n+l)-port
by z-parameters that relate the v's to the i's, it is more convenient to
choose the voltages and currents at some of the ports as independent
variables and express the remaining voltages and currents in terms of

and 1_ as independent

2) 12) V3, 3
and il in terms of these varia-

these varlables, For n = 3, we choose v
variables and then express vo, io, vl,
bles by the equations.
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Vi =8y, Vot 8,V +b 1, +bg i, (136)

i.=c Vo + C

The coefficlients are, in a sense, a generalization of the ABCD-parameters
that are used to describe two-ports. These coefficients can be calcula-
ted directly from the linear network or expressed in terms of the 2z-
parameters.

We will now formulate the equations for finding the input FWL char-
acteristic of a linear four-port terminated in three FWL resistors. We
can eliminate the voltages from Eq. (136) by the substitutions

Vo = Ry (10), v, =R, (11), v, =R, (12), and o R3 (13),

vhere R,, Re, and R3 are the impedances of the three PWL resistors, and
RO is the desired input impedance. Performing these substitutions, we
obtain

Vo = (ao2 R, + boa) (12) + (303 R3 + bo3) (13)

(137)
= Ro[(coa R, + doa) (12) + (co3 R3 + do3) (13‘)]
v, = (3.12 R, + b12) (12) + (313 R3 + bl3) (13)
(138)
= Rl[(c12 Ry + dlz) (12) + (cl3 Ry + d13) (13)]
To simplify these equations, we let 13 = Q(ia) and
RJk'aJkRk+ka} : ) ( )
J=0,1; k=2,3 139
SJkgchak+dJk ’ ’
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After performing these substitutions and cancelling 12, we obtain
R, (so2 + 843 Q) = Roz * Ro3 Q (140)
Ry (Sl2 + 813 Q) = Ry, + Rl3 Q (1)

Using Eq. (105), we can express the solution to Eq. (14l) in terms of
trivolution as

1

-1 - -1
Q=537 (R RSy ¥ Ry815 ) 8.5 (1k2)
From Eq. (140), the desired input impedance is
-1
Ry = (R, + Ro3 Q) (8,, + 803 Q) (1b3)

Thus, by using trivolution in combination with the basic operations, we
can find the PWL input impedance of any resistive network that contains
three PWL resistors.

G. RESISTIVE PWL NETWORK WITH N PWL RESISTORS

When n is odd, the linear resistive network with n PWL resistors
(Fig. 42) can be solved by an extension of the procedure used for n = 3,
If m = (n-1)/2, we choose the last m+l voltages and currents as inde-
pendent variables and express the other voltages and currents by the

matrix equation

™ ™ r ' =t "
Yo 800" *%om | P00’ " *Pom Yo
; ; ..‘a é ...b ;'
2] = .‘.‘9---.".'.‘J'-."."3---.“;'5 2 (1)
]
%o ?oo...cm ?oo...d %o
L] L ] l L] .'
bim__ ;_cmo"'cml dno'“dm_. __1m_
- : y = = se e
where vi = v, . and 1} i mel (k = 0,1,...,m)



>

The sub-matrices [aij]’ [bijl’ [ciJ]’ and [diJ] can be determined from
the impedance matrix of the linear network.”
The matrix equation represents n linear equations. We eliminate the

voltages from these equations by the substitutions

vy =RJ(1J) (3 =0,1,...,m)

Re(1p) = Ry a (33) (k = 0,1,...,n)

-

k+m+1

to obtain m+l equations of the form

<
1}

m m
=) R () = R s, (D] (G=0L.m) (1)
k=0

k=0

where

RJk aJkRi + ka

(3 =0,1,...,m; k = 0,1,,..,m) (146)
s

1
3k = St ux
If we make the substitutions
iy = xk(i")) (k = 0,1,...,m)

and then cancel 18, ve obtain m+l PWL operator equations of the form

m m
Z de& = RJ (Z S‘kak) (J = 0,1,...,m) (1,"7)
k=0 k=0

vwhere xo = ] and the remaining xk-s are unknown PWL operators. Solving
the first equation (J = 0) for R, we obtain

* Except for some changes in sign, the matrix in Eq. (144) is the same as
the transmission or chain matrix >f the network. The relation between
the tra?smission matrix and the impedance matrix is discussed in Bayard
[Ref. 7].
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m
R, = (i Rokxk) (Z Sokxk)‘-l (148)

k=0 k=0

The m unknown xk's can be found by solving the remaining m equations
simultaneously by using iteration and trivolution. Rewriting Eq. (147)
in the form

n m
Ry (S99 %y + Z Sycki) = Ry¥y ¢ Z Ry  (3=1,2,...m)
k=0 k=0 (lug)
(khJ) (ktd)

vwe can use Eq. (105) to solve for XJ. We have now demonstrated that the

Jth equation can be solved for XJ in terms of the other m-l xk's. Thus,
we have reduced the problem to solving a set of simultaneous equations

of the form
XJ =f (xl, 2,...,xd_l,xJ+l,...,xm) (J = 1,2,...,111) (150)

To solve these equations, we can set up an iteration of the form

x?*l - 1, (x?,x;,...,xk x< x:) (4 =1,2,...,m) (151)

l’ J +1) ey
where x:; is the kth approximation to X 3°
A general procedure for deriving the input v-i characteristic of a
resistive PWL network can now be stated:
1. Whenever possible, select two-terminal sub-networks that contain

PWL resistors and reduce each sub-network to a single equivalent
PWL resistor,

2, When all such simplifications have been made, redraw the network
as a linear n+l-port terminated in n PWL resistors.

3. If n is odd, determine the matrix of coefficients in Eq. (1llik4) and
then calculate the R, 's and 8,,'s by Eq. (146).

4L, Write m = (n-1)/2 simultaneous equations of the form of Eq. (1L49).

5. Solve these equations using an iteration of the form of Eq. (151)
and then calculate R, by Eq. (18).
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A similar procedure has been derived for n even, In this case, the prob-
lem reduces to the solution of n/2 simultaneous PWL-operator equations,
The derivation in this section serves to illustrate a general ap-

proach to the analysis of resistive PWL networks. We have shown that the
analysis of a network with n PWL resistors can always be reduced to the
solution of n/2 or fewer simultaneous PWL-operator equations. The gener-
al method outlined above is rather cumbersome to use and, for the solu-
tion of many PWL-network problems, it is easier to formulate a special
procedure instead of using the method exactly as given above.

H. EXAMPLES OF ITERATIVE SOLUTIONS

The bridge network of Fig. 43, which has four PWL resistors, can be
described by the loop equations

Re(il) + Rl(il +1) + (1l - 12) =0
R3(12) + Ru(i2 +1) + (i2 - 11) =0

If ve let 1, = Y(1) and cancel i, we can rewrite these

equations as

Y =Ry + I)X + R (X + I) (152)
X =(Ry + )Y + R(Y + I) (153)

If we eliminate Y by substituting the first equation into the second, we
obtain a PWL-operator equation in X which we do not know how to solve,
so we will solve Egs. (152) and (153) with an iterative procedure,

Using trivolution to solve Eq. (152) for X and Eq. (153) for Y yields

X =R *-(R2+I)*Y

1

Y =R, * -(R3 +I)*X

- 105 -



FIG. 43. BRIDGE NETWORK WITH FOUR PVWL RESISTORS.

We then set up the iteration

el = B0 * '(Re +1) * Y, (15%)

ep = Ry '(R3 +I) Xa (155)
th th
vhere xk is the k  approximation to X, and Yk is the k™ approximation
to Y. It can be shown that a sufficient condition for the convergence
of an iteration of the form

Rathreey

= »* *
Yk+1 c*»D xk+l

is P'qu'bk|m1n.|rc.]'rdkln1n >1

where |r is the minimum value of I‘raJ

- rbk l’
is the kth slope of B,

a) ~ Tvk | min

th
raj is the §  slope of A, and Thk
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For the network of Fig. 43, we have

0, 1
A=R) = 10,12

B=-(R, +I) =
-1, 1

C=Ry= |2

D= -(Ry + I) =

)

- o,

)
(3

) 2 ‘ 1,
l) + (0,1) ’(0,

1l

2) + (0,1) = (

For these values, p = 15/2 and convergence is assured.

-3
-2
1, -2
1, -3

The iteration

was carried out on the Burroughs 220 Computer (see Section IX. D.).
Starting with an initial approximation Yo = 0, the iteration converged

to four-decimal-place accuracy in six iterations.

tions were obtained

B n
-4,0000, 2.0000
-2,4286, 1.2857
-1.8571, 1.0000

0.6000, 0.2000

-0.5000, 0.5000 |

L 3-0556) '0-5556

-4,0000,
-2.4286,
-1.8571,
-0.5000,
0.6000,
- L4,0667,

The input PWL resistance to the network is

R = Rl(x +I)+ R, (Y+1I)=

—

e

-uoomo, .5000001

-2.4286, -3.1429
-1.8571, -2.2857
-0.5000, 0.0000
0.6000, 1.6000
L.0667, 5.7333

The following solu-

2.oooo“1
1.4286
1.1429
0.5000
0.0000
-2.0000

(156)

As a second example, we will derive the input and transfer charac-

teristics of the bridged-tee network of Fig. 4k,

for this network are

- 10

T -

The nodal equations
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e, + G (e2 - el) - G, (e3 - e2) =0

Gp (e3) + G, (e3 - e2) - G, (el - e3) =0

6
PV IN
h . 3 2
——AAA/ —AAA~
+ 8 . 82
e 6 |

FIG. 44. BRIDGED-TEE NETWORK WITH FOUR PWL RESISTORS.

If we replace e, with x(el) and e

tain the PWL-operator equations

3 with Y(el) and then cancel e, ve ob-

X +G, (X -1I)-06y(Y-X%X)=0 (157)
Gm(y)-cl(I-Y)+G2(Y-x)-o (158)
To solve Eq. (157) for X, we first rewrite it in the equivalent form
62[(X-I)+(I-Y)]=Gc'>(x-I)+I

vhere G! = Go + I. Postmultiplying by (I - Y)"l and solving for (X - I)
by trivolution, we obtain

(Xx-1) =[G *6*(1-0(1-1) (159)
Adding Eqs. (157) and (158) and rearranging terms, we obtain
Gl(-y+1)=cm(y)+Go(x-1)+x=“cm(-y)+céx+1

Solving for -Y by trivolution yields

Y =G, * c‘;m * (GIX + I) (160)

1
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On the basis of Eqs. (159) and (160), we can set up the iteration

‘[Eé * Gl o* (I - Yk)‘l] (1 - Yk) + 1

xk+l

- e 1
Yk+l [Gl * Gh * (Goxk+l + 1]l

This iteration was carried out on the Burroughs 220 Camputer using the
following values for the PWL conductances

0, -.1 -1, -.1 [-.1, o
G =G| 1, o 6G,= | 0 O G, = 0, 1
1.1, 1 1, 1 1,1.1

Starting with the initial approximation xo = (0,1/2), the iteration con-
verged to four-decimal-place accuracy in seven iterations. The follow-
ing values were obtained

-3.6889, -1.3u4l45 -3.1285, -0.2000
-2,2626,-1.1313 -2,2626,-0.1313
-0.1000, -0,1000 -0.1000, -0.1000
X = 0.9107, -0.0149 Y = 0.9107, 0.9256
1.0899, 1.0075 1.0899, 1.0824
2.3232, 1.3322 2.3232, 2,1121
3.5556, 2.4656 3.55%6, 2.3233

X represents the transfer characteristic between e, and ey and Y repre-
sents the transfer characteristic between e3 and e The input current
to the network is

-3.6889, -2.7889
-2.2626, -1. hlllL
[6, (T -¥) -G (X -1)] (e) 0.9207, 0.006 | (e))
i, = - - - e = . . e
11 ° 1 1.8899: 1.8875 1
2.3232, 1.3322
3.55%, 2.4656

o e

Using techniques similar to those illustrated above, several other
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examples of PWL network equations were solved iteratively with the com-
puter. In problems of this type, it may be necessary to try several
different iteration schemes for solving the PWL-operator equations be-
fore one is found which converges satisfactorily.
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VI. PWL TWO-PORTS AND PIECEWISE-PLANAR FUNCTIONS

In the preceding chapter, we considered methods for determining the
input and transfer characteristics of resistive PWL netvworks driven by a
single source. We will now consider the problem of describing the char-
acteristics of a FWL two-port which may be driven by two independent
sources. By analogy with linear networks, one might expect that a PWL
two-port could be described by equations of the form

v, =Ry (11) +R, (12)
Va = Ry (1)) + Ry, (1))

Unfortunately, equations of this form apply only in special cases. In
general, the input voltages to a PWL two-port will be pilecewise-planar
functions of the input currents., That is, a three-dimensional plot of
vy = r(il,ie) vill consist of a series of planar sections that meet at
breaklines, In each planar region, v is a linear function of 11 and

12. Piecewise-planar functions can be described mathematically by speci-
fying the equation of each plane together with a set of inequalities

that describe the region in which this equatipn is valid.

A more convenient representation of piecewisge-planar functions in
terms of PWL operators has been studied, and attempts to generalize the
concept of PWL operators to piecewise-planar operators have been made.
Lattice, tee, and pi networks have been analyzed to provide examples of

plecewise-planar functions.

A. PWL SYMMETRIC LATTICES

A symmetric lattice network composed of PWL resistors (Fig. 45a) is
relatively easy to analyze, In Fig. 45b, the lattice is redrawn as a
bridge with the current sources redistributed. It is easy to verify
that the currents supplied to nodes a, b, c, and d by the current sources
are the same in Figs. 45a and 45b, and therefore the voltages between
the nodes are unchanged. From symmetry, the net current flowing around
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(a) (by 11*12)
FIG. 4S. SYMMETRIC PWL LATTICE.

the loop adbca in Fig. 45b is zero, so the terminal voltages are
Vap = Yy = Rbg (1, + 1) + Raﬁ- (1, -1,)
Vea = Vo =RE (1) + 1) -RA (1) - 1)
By adding and subtracting these equations, we obtain
v+, = 2Rb§ (11 + 12) and R A 2Ra§ (il -1
Solving these equations for 11 and 12, ve obtain
i, =R "% (v +v)+R'1§(v -v)
1 Rb 1 2 a 1l 2

i, = Rb'lﬁ (vl + v2) - Ra'lﬁ (vl - v2)

(161)

(162)

o)

(163)

(164)

Thus, for the PWL symmetric lattice, PWL operators can be used to express
the v's in terms of the i's and conversely. The general PWL lattice is

much more difficult to analyze.
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B. PWL TEE NETWORKS

Although it is easy to express the terminal voltages of a PWL T-
network as a function of the terminal currents, it is often difficult to
solve for the currents in terms of the voltages. For the network of

Fig. 46,

v, =Ry (il) + R3 (:Ll + 12) (165)
v, =R, (12) + R3 (1l + 12) (166)
o.' R2 o

FIG. 46. PWL T-NETWORK,

When any two of the three PWL resistors are linear, it is possible to
solve for 11 and 12. For example, if Rl and R2 are linear, the sum of
Eq. (165) and the product of (rl/ré) and Eq. (166) is

r

1 l
v, + g v, = (R3 + = R3 + 1‘1) (1, + 12) (167)
from which
r 1 r
1, +1, -(R +—:!'-R3 r) (v1+%v2) (168)
r
= A (v:L + ;—i v2)

Subtracting Eq. (166) from Eq. (165), we obtain

V) -V =l - T, (169)

Solving Eq. (167) and (169) simultaneously for i, and i, yields

1
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1 y SN
i (vqy = v.) + v, A(v, + ==V,) (170)
1 rl + r2 L 1 2 2 1 r2 2_4
1 ¥ T
12 - (v2 - vl) +r A (vl + o v2)“ (171)
1+ % | 2 2]

When only one of the resistors in the T-network is linear, solving
for the currents is much more difficult. For the network of Fig. 47
the terminal voltages are

0, 1 0, 1
vy = (o, 1/2) (1) + (o, 1/2) (1, + 1)) (172)

0, 1 0, 2
vo=1+ {0 12 (1, + 1) = o, 3/ (1, +1,) -1, (173)

a4

FIG. 47. PWL T-NETWORK WITH TWO PWL RESISTORS.

If we make a three-dimensional plot of v, vs il and 12, the resulting

piecewise-planar surface has four planar sections. Examination of

Eq. (172) shows that

(1, <0, 1, +1,<0)

1 1 2 177

vl=3/2 i+ 1, (1, >0, 1, +1,<0)
v, = 3/2 11+§12 (1, <0, i, +1,>0)
v, = 11“%12 (1, >0, 1, +1,>0)
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Fig. UBa represents a top view of this plecewise-planar surface. The
breaklines, i, = O and il + 12 = 0, divide the 11-12 plane into four
sections. A similar representation of Vo has two sections separated by

the breakline, 11 + 12 = 0,

Fi=f(vy-§va)
Yy

V'l2|'+|z

(vi-4v;)
(a) (»)

FIG. 48. BREAKLINE PLOTS FOR THE NETWORK OF FIG. 47,

We will now solve Eqs. (172) and (173) to obtain 1, as a plecevise-

planar function of v, and v,. Solving Eq. (173) for (1l + 12) and sub-

stituting into Eq. (172), we obtain

0) 1 ‘0, 1l o’ 1/2
vV, = (0, 1/2 (11) + (o, 1/2) (0, 2/3) (v2 + 11) (174)

Since we do not know how to solve this equation for i1 directly, we will
solve in sections, If il <9,

0, 1/2 0, 3/2
vy =4+ 0, 1/3 (v, +1,) = 0, b/3 (v2 + 11) A (175)
from which
o, 2/3
1, = 0, 3/b (vl + va) - v, (176)
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Similarly, if i. > O, we obtain

0, 1
Y '(o, 6/5> (p+dvp) -y (amm

These two equations for il can be combined to yield

o, 1 , 2
i, = (0 0> <g 3;3) (vl + v2) - v,
) [ oo

0, 6/5
Given values of v, and v,, Eq. (178) 1is useful for computing‘il, but

1

(178)

the equation does not reveal the nature of the plecewise-planar surface
that il represents. Determination of the breaklines of this piecewise-
planar surface will greatly aid in its visualization. The breaklines in
the vyVs plane can be related to the breaklines in the 11-12 plane, To
find the breakline that corresponds to 1l = 0, we set 11 equal to zero
in Eqs. (172) and (173) and solve for the relationship between v, and v,.

With 1, = 0, Eqs. (172) and (173) reduce to

- o, 1 1 a - o, 2 "
"1 (o, 1/2> () mnd v o, 3/2 )

Eliminating 12, we obtain

O) 2 O) 1 = 0, 2
2" (o, 3/2) (o, 2) ) (o, 3) o) o)

Similarly, for the other breakline, substituting i
Eqs. (172) and (173) yields

T (g: 1/:) )

+ 1, =0 into

1l 2

V2 = 12 = -il
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from which

vp= () (v (180)
O, -2
Eqs. (179) and (180) represent breaklines which divide the v,-V, plane

into four regions as shown in Fig. u48b,
We next consider an example of a PWL T-network in which Ry, Ry, and
R, are all PWL. If

3
0, 1 0, 1/2 -3, 2
R, = ’ R, = ’ R, = [ 7
1 (1, 1/2) 2 e (-2, 1>" 3 (o, 1)3

Eqs. (165) and (166 ) become

0, 1 -3, 2
v, = (l, 1/2) (il) + (o, 1) (:I.l + 12) (181)
v, = (Z, l/i) (1,) + (2’ i) (4, + 1) (182)

The breaklines for v, are il = 2 and il + 12 = 3, and

the breaklines for Vo are i2 = 4 and il + 12 = 3, These breaklines di-

vide the 11-12 plane into seven regions as shown in Fig. 49a. Even

though we cannot solve Eqs. (181) and (182) directly for 1, and 1., we

can use these equations to solve for the breaklines of 11 and 12 in the

V)=V, plane. If ve substitute i, = 2 in Egs. (181) and (182) and then
apply the shifting rule, we obtain
-3, 2 '3, 2
v, =2 + (2 +1,) = ’ (1,) (183)
! (o, 1) ° <u, 1\) ?
1, 5/2
= [2Y2) e (M2) =l 2]y (s
2, 1 2, 1 o, 2
b
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L 2.

Solving Eq. (183) for i, and substituting in Eq. (184), we obtain

2
1, 5/2 -11/4, 5/4

v, = | 2, 32 '3/i’ AT RS
0, 2 o 8, 2

This equation represents the breakline in the V1=V plane that corres-
ponds to the breakline il = 2, Similarly, the breaklines that corres-
pond to 1, + 12 =3 and 12 = I are respectively

T, -1 11/3, 2/3
v, = 6, -1/2 (vl) and v, = b, 1/2 (vl)
17/2, -1 8/3, 2/3

These three breaklines are plotted in Fig., 49b. The seven regions in
the vl-v2 plane are numbered to correspond to the respective regions in

the i, -1, plane. One can think of Egs. (181) and (182) as mapping the

breaklines in the :Ll-i2 plane into the corresponding breaklines in the

vl-v2 plane, Figure 4gb also represents a top view of a plot of 11 or
12 as a function of vy and Voo The equations for each of the seven re-

gions can be solved individually if desired, For example, in region one,
1,<2,1,> L, and 1. + i, < 3, so Eqs. (181) and (182) reduce to

2 1
vy=1, -3+2 (1l + 12)
Vo=-2+1, -3 +2 (4 + 12)
from which

il = 006 Vl - O.h "'2 - 002

i, =-~-0M v+ 0.6 v, + 1.8

These equations are valid for Vs in the range
11/3 +2/3 v <vy <T -vy
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Similar calculations can be carried out for the other six regions., Al-
1 and 12 directly
in terms of PWL operators, PWL operators were still useful for determin-
ing the breaklines of these solutions,

though we were unable to determine the solutions for i

C. EXPANSION OF PIECEWISE-PLANAR FUNCTIONS IN TERMS OF PWL OPERATORS

When we tried to solve Eqs. (181) and (182) simultaneously for i,
we were unable to find a solution directly in terms of PWL operators;
therefore, it was necessary to determine the breaklines first and then
solve for each section separately. We know that il is a piecewise-
planar function of vy and Vo but it is not obvious that this function
can be expressed in terms of PWL operators. In general, we would like
to determine what class of piecewise-planar functions of two variables
can be expressed in terms of PWL operators.

Stern [Ref. 5, pp. 59-63] gives a method for expressing any single-
valued piecewise-planar function of two variables in terms of @ - trans-
formations. The piecewise-planar surface is first broken down into a
sum of pyramids, each with a vertex on gne of the breakpoints, and then
each pyramid is expressed in terms of ﬂ'-transfonnations. We have shown
in Section II. E. that any PWL function which can be expressed in Stern's
notation can be converted to PWL-operator notation., It therefore fol-
lows that any single-valued piecewise-planar function of the two varia-
bles can be expressed in terms of PWL operators. The method for finding
such an expression is somewhat devious and the resulting expression is
somewhat cumbersome to work with, but at least such an expression always
exists,

As an example, consider the piecewise-planar surface whose break-
lines are shown in Fig. 4B8b, Since this surface has a single breakpoint,

it can be written directly in Stern's notation as

i, = [2/3 (vl - % ve), 3/ (vl - 1/3 v2), (vl -3 v2), 6/5 (vl -1/3 vzil¢+
(185)

- 120 -



. J

Using Eqs. (22) and (A-5) to convert to PWL operator notation, we obtain

0, 0
| 1 1 2 1
1 = 0,1 TVt +t(FV-3Vv)

¢

1
1 (%vl,umvg)uvl-%vz) g

0, 0 0, O o, O
= \o, 1 0, 6/5 (v +3vy) - 0, 3/b4 (vy +vp)
0, 0
+ . (v + Vv ) -V (186)
0, 3k 1YV 2

This expression is more complicated than Eq. (178) which was obtained
more directly by solving Eqs. (172) and (173).

D. PIECEWISE-PLANAR OPERATORS

In the previous section, we showed that any single-valued piecewise-
planar function can be expressed in terms of PWL operators. As seen
from the example, for even a simple piecewise-planar surface, the result-
ing expression may be very complicated, and the expression which repre-
sents a given pilecewise-planar function is not unique. Furthermore,
there is no simple and direct method for writing down a PWL-operator ex-
pansion of the function from its graph.

For the above reasons, it would be desirable to define piecewise-
planar operators to represent piecewise-planar functions more directly.
If a suitable piecewise-planar operator, ( , could be defined, we

could write the characteristics of a PWL two-port in the form

2 2

Algebraic operations with piecewise-planar operators could then be de-
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fined by analogy with PWL operators. For example, in terms of the in-
version operation, Eq. (187) could be solved for the currents in terms
of the voltages in the form

i v

1 alY
=@ (188)

( 12 ( Vo

Several attempts have been made to define piecewise-planar operators,
but no really satisfactory method was discovered except in the special
cases where all of the breaklines are parallel or all of the breaklines
meet at a single point. A basic difficulty is encountered in trying to
extend the PWL-operator concept to the piecewise-planar case., A linear
segment of a PWL curve can be adjacent to only two other segments, but
a planar section of a piecewise-planar surface can be adjacent to any
number of other sections. This limitation makes a simple extension of
the PWL operator notation impossible. Determination of a satisfactory
method for generalizing PWL operators to the case of two or more inde-
pendent variables is one of the important unsolved problems in PWL-
network theory.

- 122 .



i

VII. ANALYSIS OF ELECTRONIC CIRCUITS

PWL operators are useful in the analysis of electronic circuits.
For large-signal operation, the characteristics of diodes, vacuum tubes,
transistors, and other electronic devices can be approximated by PWL
characteristics and described in terms of PWL operators. Since a number
of diode-circuit examples have already been presented, in this chapter

ve will analyze several vacuum-tube and transistor circuits.

A. TRIODE CHARACTERISTICS

Figure 50a shows a FWL approximation to the characteristics of a

triode. If a three-dimensional plot of ib as a function of eb and

e8 is made, the breaklines divide the eg-eb plane into three regions
(Fig. 50b). In the cutoff region, 1, = 0; in the normal-operation
region, 1, = (eb + ueg)/rp; and in the saturation region, 4, = eb/rs.
A PWL triode model [Ref. 2, p. 227] that has these characteristics is

shown in Fig. 50c. When D1 is off, :Lb = 0 and the tube is cut off,

When Dl is on and D2 is off, the tube is in the normal operating

reglon. When D, and D, are both on, 1 = eb/rs and the tube is

saturated. D3 and r8 have been added to the model to account for the
grid current which flows when es > 0.

We will now derive the PWL-operator equations that represent the
characteristics of the PWL triode model. We can redraw the PWL model as
shown in Fig., 504 by transforming the dependent voltage source to a cur-
rent source, From the equivalent model,

o, 0 we  \ 0, w

= ) - ——L ’
o O, r -r 1b rp-rs * o, r (1b) (1%9)
’p s ’ s

We will solve this equation to obtain ib as a function of e and
ey If i, >0, Eq. (189) reduces to

o, 0 ue ‘
e. = i, - —E V4 1 (189a)
b b r -r s b

o, rp-rs P s
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Multiplying both sides of this equation by l/r‘s ~ and then subtracting
p.eg(rp - rs) , we obtain

e pe o, 0 pe
2o 8. 1 - —B8 _5_
(rs rP"B) (0, 2 -1> (b rP"S) (11’ P 8)

0, 1 ue
= 1, - —&. (190)
o, r/r_/ Tp%s
» Tp/Tg
Solving for 1.b and then subtracting e.t)/rs from both sides, we obtain

L ry (O, rs/rp Ty TpTg rp-rs

o, 0 e ue
= Ts FE “r_-r (191)
0, — -1 8 p 8
This equation can be rewritten in the form

0, 1 1 e eb
iy = (0’ o) = (e +uey) - F, * F (192)

at|o®

When this expression is positive, it gives the correct value of j‘b
To prevent :Lb from going negative, wve pnemultiply by (0, 0)

0,1/ .
The resulting expression for the plate current in the PWL triode model

is
0, 0 0,1 1 e e
b (o, s) { (o, o) [§ (o + ueg) - f] + ;:-} (193)
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and the grid current is
0, 0
1 = (e ) (194)
& 0, l/rg g

B. TRANSISTOR CHARACTERISTICS

Using the PWL model of Fig. 51, the characteristics of a transistor
in the grounded-base connection can be represented by the equations

%) Wy en - (7))
= (1) +r (1 +1) = i)+ 1
eb 0, r e b‘'e c 0, r_+r e b ¢

<
]

¢ e (195)
and 0, r
Vp = (o’ :) (1c + aie) + 1y (ie + 1c) (196)
o, r 1y | '
= o, . (ic‘ + aie) + rb(l-a) :le (196)

b

Replacing :le with -(:I.b + ic) in the above equations, we obtain the
equations which describe the grounded-emitter transistor model of Fig.
52a as

o r
Ybe = Veb = ( e) (:Lb + 1c) i (297)

0, (]

0, re o, rc
Vee = Vb * Voe © o o (i} + ic) + o o [:I.c -a (:l.b + 1c)]
! ’ (198)

Equation (198) can be rewritten in the form

o, re o, Ty
Vo= (1, +1) 4 (1, - v4) (199)

0, w 0, O
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FIG. S1. PWL MODEL FOR GROUNDED-BASE TRANSISTOR.

vhere r, =T (1 -a) and b =a/(1 - a). Equations (197) and (199)
correspond to the alternate grounded-emmiter model of Fig. 52b.

FIG. 52. PWL MODELS FOR GROUNDED EMITTER TRANSISTOR.
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C. TRANSFER CHARACTERISTIC OF A TRIODE FEEDBACK AMPLIFIER

As an example of the analysis of a vacuum-tube circuit, we will de-
termine the voltage transfer characteristic of the triode feedback ampli-
*
fier of Fig. 53. We will use the PWL model of the triode (Fig. 50)
with the following values of tube parameters:
Iy = 5k, u =20, r, = 0.1 kR, and rg = 500 k&

Substituting these values into Eqs. (193) and (194), we find that the

tube characteristics are given by

0, 0 0, 1 \ 8

1, = <o, 1) (0, o) ( e8 - 9. eb) + 10 ey (200)
0, 0

18 = ( o oo (eg) (201)

Since the 1000-kfl feedback resistor is a negligible load on the plate
circuit, we can write the following node equations for the network:

200 - e

= —— (202)
and
“ ! 3_1.
1g = 1500 * 1006 - 1000 (203)

Combining Eqs. (200) and (202) and Eqs. (201) and (203) and simplifying,

we obtain

0, O 0, 1 \
(200 - eb) = (o, 5) o, o (1+e8 - 9.8‘eb) +10 e, (204)

+

* Stern [Ref. 5, pp. 23-25] analyzes this same network using @ -trans-
formations. The amount of work required by the two methods is about
the same.
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and

0, 0 0, 3
e1=3e5+(o,2 (es)-eb= o, 5 (°g)’°b

(205)

FIG. $3. TRIODE FEEDBACK AMPLIFIER.

Equation (204) can be solved for e8 as follows. Premultiplying by

-1
0, 0
(0 5) , applying the shifting rule, (Eq. (59), and subtracting
»

lOeb yields

0, L ) 200L, L 0, 1 (he 9.6 )
200 - e ) - 10 = - 9.
(o, .2) ( % b ( ko, 10.2) %) (o, o) g2 %

-1
0, 1
Premultiplying by (0 0> and adding 9.8 e, gives
?

200L, L
0, 1\ <2oo L, L \ o) (o) ot
(-e,.) +9.8 = 0, 0.4 | (~e ) = ke
0, L 40, 10.2 o b ’ v g
koL, 10.2L



Solving for e and substituting into Eq. (205) we obtain

150L, 0.75L

0L, 0.25L
0,3y [ % 30, 1.3
¢ = \o, 5) 10, 0.1] (-e) -¢ = 50, 1.5 (-e,)
10L, 2.55L 50L, 12.75L
Solving for ey and letting L + e, the desired transfer characteristic
is
200, 0
e, 300/13, -10/13 (e,) (206)
100/3, -2/3
200/51, 0

D. TRANSFER CHARACTERISTIC OF A TRANSISTOR AMPLIFIER

As an example of analysis of a transistor circult, we will derive
the voltage transfer characteristic of the grounded-base transistor am-
plifier of Fig. 5ha. Using the PWL model of Fig. 54b, the amplifier can
be described by the equations

v (L) +r 1

1 Vo, R+, | °© boe (207)
E, L

2 (:Lc + aie) +r (ie + ic) = -1 R, (207a)

E, O
Equation (207a) can be rewritten in the form

E, r +Rc

b e

(ic + aie) ={(a - 1) r, + aRc] i

Solving for ic, the current transfer characteristic is

-%; a
.= -r (ie)
—-E __ b
)
rb+Rc rb+Rc
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from which

ERc
—_— aR
L’ ¢
Vo = R, 1, = (1)
ER r R
c bc

r +R ’ T +R
D¢ be

Solving this equation for i, and substituting in Eq. (207), ve obtain

- E 1
ey ==
0, 1 [ T =& (-v2>
v, = (vp) + . | ==
1 2 bl R
o, Re+rb E r.b+l7(c ¢
14
Ty r‘ch
-E L
=’ ax
c
i ’(Re+rb)E_ Re‘+rb _ rl )
7 &R R 2
c c
"(Re"'rb)E (Re"'rb) (Rc+rb) ) fH
L4
Ty r‘uRc Rc

Solving for v, and letting L - e , We obtain the voltage characteristic

(Fig. 5hc) as

0 , 0
aRC
V2 = 0 ’ w (Vl) (208)
Rc(Re+rb) E rbRc

-, :
Re( rb+Rc )-&»rbRc Re( rb+Rc )+rbRc
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E. SERIES-TRIODE NEGATIVE RESISTANCE CIRCUIT

We will now detemine the input v-i characteristic of the two-triode
circult shown in Fig., 55a, Each triode is replaced with a PWL model as
shown in Fig., 55b. The grid voltages are

egl=-12 382=—Rk(12-11)

Since the sum of the voltages around the loop 1s zero,

0, L
E = rp+Rk+pRK+( > (12-11)

0, 0
M @) (209)
i 2
+ rp+Rk+“Bk+(o,o) o
The input voltage is
o, L
v fr, ¢ R, + (o o) (12) + WR, (:L2 ~ 11) (210)

= 1 the t these equa-
If we let R rp + Rk + ka and 'then rearrange the terms, these eq

tions become

o, L o, L
E = (0’ R) (12 - 11) + (0’ R) (12) (211)
and
0, L (222)
= i) - i 212
v (o, R) (1) - uR 1)



(2)

“LINDMID

AINVISISAM FAILVOAN FQOINL-SIIHAS

(a)

(" - %)

°S$

‘D1d

(¢)
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Solving for 11, ve obtain

-E/R, L/R
PR () / (1,)
1, = 1. )+1_ =| -ER, 2 |4
1 \o,yr] \& r/ 2 2 e
‘E/L’ l

We next solve for i, and substitute in Eq. (212), which yields

E/L, R/L E, R
v = E/2R, 1/2 |(4,) - wR 1, = |E/2, R/2 | ({;) - WR, 1,
o, R |
E/L, 1 0, R

Replacing R with rp + Rk + ""Rk in the above equation, we find the in-

put v-1 characteristic to be

E, rp+Rk

g Tp*t Ry (1)
2 2

(1) (213)

o, rp-o-Rk

This curve is plotted in Fig. 55c for the case R, (k-1) > T
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VIII. ENERGY STORAGE ELEMENTS IN PWL NETWORKS

Until now, we have considered only resistive PWL networks without
energy-storage elements. In this chapter, we will attempt to extend the
usefulness of PWL operators to the analysis of networks that also con-
tain linear or PWL capacitors or inductors. By a PWL capacitor, we mean
a capacitor whose charge-voltage characteristic is PWL., If we represent
this characteristic by the PWL operator C, then the current through the

capacitor is

1= =5 lev)]

By a PWL inductor, we mean an inductor whose flux-linkage - current
characteristic is PWL. If we represent this characteristic by L, then
the voltage across the inductor is

v=E .4 )]

PWL inductors and capacitors are useful as approximations to nonlinear
inductors and capacitors.

A PWL R-L-C network can always be solved on a section-by-section
basis, At any instant of time, the network reduces to a linear network.
The solution to the linear differential equations of this network is
valid until one of the PWL elements changes state. When the network
contains several PWL elements, we must solve for the voltage or current
in each one in order to find out which element will change state first.
After the change of state, we have a new linear-network problem and a
nev set of linear differential equations to solve. The constants in the
solution can be obtained by matching boundary conditions at the time of
transition from one section to the next. This matching process will
generally require the numerical solution of transcendental equations.
This section-by-section method is usually very tedious and time-consuming
to carry out.

An attempt has been made to develop more efficient methods of solving
PWL networks that contain energy-storage elements. By using PWL operators,
a problem can be formulated in terms of PWL differential equations. For
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FWL R-C, R-L, and L-C networks, the solution to these PWL differen-
tial equations can be expressed in terms of PWL operators. An efficient
method of obtaining the solution has been derived for the FPWL parallel

R-C network.

A. PARALLIEL R-C PWL NETWORKS

In this section, we will develop methods for analyzing the parallel
R-C PWL network of Fig. 56. Either the resistor or capacitor, or both,
may be PWL, By duality, the methods developed here can be applied to
the series R-L network.

The voltage across the parallel R-C network satisfies the differen-
tial equation

%; [e(v)] +R™Y (v) = 0 (214)

where C(v) is the charge on the capacitor and R-l (v) 1is the cur-
rent through the resistor. We will assume that when t = O, the capaci-
tor is initially charged to a positive voltage Vor If the capacitor is
linear, Eq. (214) reduces to

o g—}: +RL(v) =0 (215)

We will show that if R 1is monotonic, Eqs. (214) and (215) have solu-
tions of the form

v = R[eB(-t)] (216)

Taken by itself, eB ~does not have any meaning; therefore, to evaluate
Eq. (216) for a given value of t, we must first find a = B(-t),

then calculate b = ea, and finally find v = R(b). The current in
the resistor is given by

- B (217)
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FIG. $56. PARALLEL R-C PWL NETWORK.
We will now attempt to determine B 8o that Eq. (216) satisfies

Eq. (214) and the initial condition v = v, Substituting Eq. (216)
into Eq. (21Lk), we obtain

4 (er(eB-t)] 4+ (¥ L g (218)

The indicated differentiation causes some difficulty because the deriva-
tive of a PWL function is not continuous. We will let

a.l, bl y Cys dl

8, b | 1 1 [y
A=CR= S and Ba= Y2 | °
* x y [ ]

8 bn n-1 n-1 Cy? dn

be monotonically increasing PWL operators, where the breakpoints of A
are designated by Xy sXppeeesX and the inverse breakpoints of B by
Yys¥preees¥, 3¢ If some of the x's are negative, enough of the uc;
tions of CR should be discarded so that only positive x's remain.

Applying the rule for differentiating a function of a function, we
obtain

& A[eB('t)]} = aeB) 1§ B4 (219)

* This procedure is justified because in Eq. (218) CR operates on
eB(-t) , Wwhich is always positive,
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» b

where the prime indicates differentiation with respect to the argument
of the function. For the Jth section of A,
A[eB('t)] =a,+b eB('t)
J J
from which
Al [eB( -t)] = bJ

Since the slope of a PWL function is discontinuous, the derivative of
A 1is a jump function of eB('t), as shown in Fig. 57a. The jumps oc-

cur at the breakpoints of A, For the Jth section of B,
eB(-t) - e(cJ - ddt)

from which

(

g{ [eB(-t)] - _dJe th) o-d eB(-t)

¢ =
J 3

Since the value of d.J changes at each breakpoint of B, this deriva-

tive is also discontinuous, as shown in Fig. 57b. At the Jth break-

point of B, eB(-t) has the value e(yJ).

Substituting Eq. (219) into Eq. (218), we obtain

A’[eB('t’)] x %E [eB(-t)] - _eB(-t) (220)

For the Jth section, Eq. (220) becomes

by x -d, B(-t) | -eB(-t)

from which

dJ = 1/bJ (§J =1,2,...,n) (221)

Since

bJ # bd+l and dJ £ dJ+l, ifr deJ = 1, then

- 139 -



b,d l and b d, # 1, Therefore, in order that Eq. (220) be satis-
344 # J+1%3 *B(-t) ) q ( )

fied for all values of e

in Fig. 59, which implies that

, the breakpoints must match as indicated

X = e (§ =1,2,...,n-1)
from which
c,d -C a
Yy de+i = - xy (222)
+ J
A [eB(-t))
.h
b,
by
(a) by |
| b3 |
| | |
"Ii xg '3: Xn-1] o8(-t)
| o :
oty ._!J[ o ! RIE o8(-t)
9 !
|
|

. P 8L
(v) ’a\l\’ 2 - ~q
~ n
~
&;[o'(")]

FIG. 57. DERIVATIVES OF PWL FUNCTIONS.
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Solving for c g2 ve obtain

(a -d,) fnx, +c d
e, =¥t 9 ) 44 (J = 1,2,.00,n-1)

J dJ +1

(223)

Assuming that A i1s chosen so that the initial state of the network
lies beyond the last breakpoint,

v, = R[eB(o)] =q, + rmecn

vwhere O and rlll are the intercept and slope of the last section of R,
from which

Vv -
c, = 4n —9-—1‘—;'!- (224)
m

We have now determined the unknown PWL operator, B, The d's are given
by Eq. (221) and, after Eq. (224) is used to find c, » K. (223)
can be used as a recursion formula to find the remalning c's.

We will illustrate the above procedure for analyzing the parallel
R-C PWL network by two examples--one with C linear and one with both
R and C PWL. If C=1, v°-6, and

-1, 1
0, 1/2 |°
R = -6, 2 l“
3/2, 1/2 X
then A =R and
¢, 1
c 2
B = e’
ey 1/2
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The c's are determined from Eq. (224) and (223) as follows:

¢, = In (i';é@>= 2.1972

(2-3) 5 + % ¢,

The voltage is then given by

-1’
0,
V = -6’

3/2,

This solution means

<
n

<
n

<
"

<
"

where tl = 0.2939, t2

3/2 + % exp (2.1972 - 2t)

6 +2 exp (17564 - 3t)

-1 + exp (1.7799 - t)

C, = = 1-756]*
3 2
(%-2) tnb + 2¢
c, = : 3 - 2.8667
3
(2-1) fn2 + ¢,
¢y = = 1.7799
2
- -
1 1.7799, 1
1/2 2.8667, 2
2 exp 1.756’4, % (-t) (225)
1/2 2.1972, 2
L .
= 3/2 +9/2 et (0< t<t,)

= 0.7402, and t3 = 1.0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>